Starch intrinsic crystals affected the changes of starch structures and digestibility during microwave heat-moisture treatment
The structural and functional changes of starch during hydrothermal treatment are influenced by its intrinsic properties. However, how the intrinsic crystalline structures of starch affect changes in structure and digestibility during microwave heat-moisture treatment (MHMT) has not been well unders...
Gespeichert in:
Veröffentlicht in: | International journal of biological macromolecules 2023-06, Vol.240, p.124297-124297, Article 124297 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The structural and functional changes of starch during hydrothermal treatment are influenced by its intrinsic properties. However, how the intrinsic crystalline structures of starch affect changes in structure and digestibility during microwave heat-moisture treatment (MHMT) has not been well understood. In this study, we prepared starch samples with varying moisture content (10 %, 20 %, and 30 %) and A-type crystal content (4.13 %, 6.81 %, and 16.35 %) and investigated the changes in their structures and digestibility during MHMT. Results showed that starch with a high A-type crystal content (16.35 %) and moisture levels of 10 % to 30 % exhibited less ordered structures after MHMT, while starches with lower A-type crystal content (4.13 % to 6.18 %) and moisture content of 10 % to 20 % showed more ordered structures after treatment; but less ordered structures when the moisture content was 30 %. All starch samples had lower digestibility after MHMT and cooking; however, starches with lower A-type crystal content (4.13 % to 6.18 %) and moisture content of 10 % to 20 % displayed significantly lower digestibility after treatment compared to modified starches. Accordingly, starches contained content of A-type crystals of 4.13 %–6.18 % and moisture of 10 %–20 % potentially had better reassembly behaviors during the MHMT to slow starch digestibility in a larger magnitude. |
---|---|
ISSN: | 0141-8130 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2023.124297 |