Insights into the changes of structure and digestibility of microwave and heat moisture treated quinoa starch

In this study, quinoa starch was subjected to microwave and heat moisture treatment (MHT) with various moisture content (15 %, 25 %, 35 %) and microwave power (4.8, 9.6, 14.4 W/g), and its structure and digestibility were investigated. SEM and particle size analysis indicated that MHT caused the agg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2023-08, Vol.246, p.125681-125681, Article 125681
Hauptverfasser: Liu, Guangxin, Zhang, Rong, Huo, Shuan, Li, Jing, Wang, Mengting, Wang, Wei, Yuan, Zhining, Hu, Aijun, Zheng, Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, quinoa starch was subjected to microwave and heat moisture treatment (MHT) with various moisture content (15 %, 25 %, 35 %) and microwave power (4.8, 9.6, 14.4 W/g), and its structure and digestibility were investigated. SEM and particle size analysis indicated that MHT caused the agglomeration of starch granules and increased the particle size. Moreover, MHT increased the short-range order structure and relative crystallinity, except for MHT with moisture content (35 %). DSC results demonstrated that the gelatinization temperature and gelatinization enthalpy had a slight improvement after MHT. Moreover, MHT increased the amylose content to some extent. It was worth noting that the digestibility of quinoa starch significantly decreased. After MHT, a part of rapidly digestible starch (RDS) was converted into slowly digestible starch (SDS) or resistant starch (RS). Particularly, when moisture content was 25 %, the starch had a highest SDS + RS content. Thus, this study provided a potential approach using MHT to modulate the digestibility of starch. [Display omitted] •MHT induced molecular structure rearrangement.•MHT transformed part of RDS into SDS or RS for quinoa starch.•MHT improved the short-range order and relative crystallinity.•Moisture content had greater influence than microwave power.•The relationship of structure and digestibility was illustrated.
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2023.125681