Cadmium and lead removal by Mg/Fe bimetallic oxide-loaded sludge-derived biochar: batch adsorption, kinetics, and mechanism
Biochar is a valuable adsorbent for the removal of heavy metals from water, and it is important to explore ways to increase its heavy metal adsorption capacity. In this study, Mg/Fe bimetallic oxide was loaded onto sewage sludge-derived biochar to enhance its heavy metal adsorption capacity. Batch a...
Gespeichert in:
Veröffentlicht in: | Environmental science and pollution research international 2023-08, Vol.30 (37), p.86866-86878 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Biochar is a valuable adsorbent for the removal of heavy metals from water, and it is important to explore ways to increase its heavy metal adsorption capacity. In this study, Mg/Fe bimetallic oxide was loaded onto sewage sludge-derived biochar to enhance its heavy metal adsorption capacity. Batch adsorption experiments for the removal of Pb(II) and Cd(II) were performed to evaluate the removal efficiency of Mg/Fe layer bimetallic oxide-loaded sludge-derived biochar ((Mg/Fe)LDO-ASB). The physicochemical properties of (Mg/Fe)LDO-ASB and corresponding adsorption mechanisms were studied. The maximum adsorption capacities of (Mg/Fe)LDO-ASB for Pb(II) and Cd(II), which were calculated by isotherm model, were 408.31 and 270.41 mg/g, respectively. Adsorption kinetics and isotherms analysis showed that the dominant adsorption process of Pb(II) and Cd(II) uptake by (Mg/Fe)LDO-ASB was spontaneous chemisorption and heterogeneous multilayer adsorption, and film diffusion was the rate-limiting step. SEM-EDS, FTIR, XRD, and XPS analyses revealed that the Pb and Cd adsorption processes of (Mg/Fe)LDO-ASB involved oxygen-containing functional group complexation, mineral precipitation, electron-π-metal interactions, and ion exchange. The order of their contribution was as follows: mineral precipitation (Pb: 87.92% and Cd: 79.91%) > ion exchange (Pb: 9.84% and Cd: 16.45%) > metal-π interaction (Pb: 0.85% and Cd: 0.73%) > oxygen-containing functional group complexation (Pb: 1.39% and Cd: 2.91%). Mineral precipitation was the main adsorption mechanism, and ion exchange played a crucial role in Pb and Cd adsorption. |
---|---|
ISSN: | 1614-7499 0944-1344 1614-7499 |
DOI: | 10.1007/s11356-023-28574-x |