Elevation performance of 1.25D and 1.5D transducer arrays

Present 1D phased array probes have outstanding lateral and axial resolution, but their elevation performance is determined by a fixed aperture focused at a fixed range. Multi-row array transducers can provide significantly improved elevation performance in return for "modest" increases in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 1997-09, Vol.44 (5), p.1027-1037
Hauptverfasser: Wildes, D.G., Chiao, R.Y., Daft, C.M.W., Rigby, K.W., Smith, L.S., Thomenius, K.E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Present 1D phased array probes have outstanding lateral and axial resolution, but their elevation performance is determined by a fixed aperture focused at a fixed range. Multi-row array transducers can provide significantly improved elevation performance in return for "modest" increases in probe and system complexity. Time domain simulations of elevation beam profiles are used to compare several types of multi-row probes. The elevation aperture of a 1.25D probe increases with range, but the elevation focusing of that aperture is static and determined principally by a mechanical lens with a fixed focus (or foci). 1.25D probes can provide substantially better near- and far-field slice thickness performance than 1D probes and require no additional system beamformer channels. 1.5D, probes use additional beamformer channels to provide dynamic focusing and apodization in elevation. 1.5D probes can provide detail resolution comparable to, and contrast resolution substantially better than, 1.25D probes, particularly in the mid- and far-field. Further increases in system channel count allow the use of 1.75D and 2D arrays for adaptive acoustics and two-dimensional beam steering. Significant improvements in clinical image quality can be expected as multi-row probes become increasingly available in the marketplace.
ISSN:0885-3010
1525-8955
DOI:10.1109/58.655628