High performance BCB-bridged AlGaAs/InGaAs power HFETs
A novel low-k benzocyclobutene (BCB) bridged and passivated layer for AlGaAs/InGaAs doped-channel power field effect transistors (FETs) with high reliability and linearity has been developed and characterized. In this study, we applied a low-k BCB-bridged interlayer to replace the conventional air-b...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2003-06, Vol.50 (6), p.1532-1536 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A novel low-k benzocyclobutene (BCB) bridged and passivated layer for AlGaAs/InGaAs doped-channel power field effect transistors (FETs) with high reliability and linearity has been developed and characterized. In this study, we applied a low-k BCB-bridged interlayer to replace the conventional air-bridged process and the SiN/sub x/ passivation technology of the 1 mm-wide power device fabrication. This novel and easy technique demonstrates a low power gain degradation under a high input power swing, and exhibits an improved adjacent channel power ratio (ACPR) than those of the air-bridged one, due to its lower gate leakage current. The power gain degradation ratio of BCB-bridged devices under a high input power operation (P/sub in/ = 5 /spl sim/ 10 dBm) is 0.51 dB/dBm, and this value is 0.65 dB/dBm of the conventional air-bridged device. Furthermore, this novel technology has been qualified by using the 85-85 industrial specification (temperature = 85 C, humidity = 85%) for 500 h. These results demonstrate a robust doped-channel HFET power device with a BCB passivation and bridged technology of future power device applications. |
---|---|
ISSN: | 0018-9383 1557-9646 |
DOI: | 10.1109/TED.2003.813504 |