Preparation of biocompatible structural gradient coatings on pure titanium

In order to overcome the poor osteo-inductive properties of titanium implant, some methods have been used. The efforts to improve implant biocompatibility and durability by applying a hybrid technique of composite oxidation (pre-anodic and micro-arc oxidation) and hydrothermal treatment were describ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of Nonferrous Metals Society of China 2004-10, Vol.14 (2), p.323-327
Hauptverfasser: Tang, Guang-Xin, Zhang, Ren-Ji, Yan, Yong-Nian
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In order to overcome the poor osteo-inductive properties of titanium implant, some methods have been used. The efforts to improve implant biocompatibility and durability by applying a hybrid technique of composite oxidation (pre-anodic and micro-arc oxidation) and hydrothermal treatment were described. Pure titanium was used as the substrate material. An oxalic acid was used as the electrolyte for the pre-anodic oxidation. A calcium and phosphate salt solution was acted as the electrolyte of micro-arc oxidation and the common pure water was used for hydrothermal treatment. X-ray diffraction (XRD), and scanning electron microscopy (SEM) have been used to investigate the microstructure and morphology of the coatings. The results show that a compact TiO2 film can be made by pre-anodic oxidation, which is effective as chemical barriers against the in-vivo release of metal ions from the implants. A porous TiO2 coating can be produced by micro-arc oxidation on titanium plate, which is beneficial to bone tissue growth and enhancing anchorage of implant to bone. De-calcium HA can be formed on the coating using hydrothermal treatment, which is similar with the primary component of bone and has a very good osteo-inductivity. The porous gradient titania coating made by the hybrid oxidation and hydrothermal treatment should show good bio-compatibility in the environment of the human body.
ISSN:1003-6326