Application of a Statistical Model Updating Approach on Phase I of the IASC-ASCE Structural Health Monitoring Benchmark Study

This paper addresses the problem of structural health monitoring (SHM) and damage detection based on a statistical model updating methodology which utilizes the measured vibration responses of the structure without any knowledge of the input excitation. The emphasis in this paper is on the applicati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of engineering mechanics 2004-01, Vol.130 (1), p.34-48
Hauptverfasser: Lam, H. F, Katafygiotis, L. S, Mickleborough, N. C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper addresses the problem of structural health monitoring (SHM) and damage detection based on a statistical model updating methodology which utilizes the measured vibration responses of the structure without any knowledge of the input excitation. The emphasis in this paper is on the application of the proposed methodology in Phase I of the benchmark study set up by the IASC-ASCE Task Group on structural health monitoring. Details of this SHM benchmark study are available on the Task Group web site at 〈http://wusceel.cive.wustl.edu/asce.shm〉. The benchmark study focuses on important issues, such as: (1) measurement noise; (2) modeling error; (3) lack of input measurements; and (4) limited number of sensors. A statistical methodology for model updating is adopted in this paper to establish stiffness reductions due to damage. This methodology allows for an explicit treatment of the measurement noise, modeling error, and possible nonuniqueness issues characterizing this inverse problem. The paper briefly describes the methodology and reports on the results obtained in detecting damage in all six cases of Phase I of the benchmark study assuming unknown (ambient) data. The performance, limitations, and difficulties encountered by the proposed statistical methodology are discussed.
ISSN:0733-9399
1943-7889
DOI:10.1061/(ASCE)0733-9399(2004)130:1(34)