High-performance low-complexity wordspotting using neural networks

A high-performance low-complexity neural network wordspotter was developed using radial basis function (RBF) neutral networks in a hidden Markov model (HMM) framework. Two new complementary approaches substantially improve performance on the talker-independent Switchboard corpus. Figure of merit (FO...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 1997-11, Vol.45 (11), p.2864-2870
Hauptverfasser: Chang, E.I., Lippmann, R.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A high-performance low-complexity neural network wordspotter was developed using radial basis function (RBF) neutral networks in a hidden Markov model (HMM) framework. Two new complementary approaches substantially improve performance on the talker-independent Switchboard corpus. Figure of merit (FOM) training adapts wordspotter parameters to directly improve the FOM performance metric, and voice transformations generate additional training examples by warping the spectra of training data to mimic across-talker vocal tract length variability.
ISSN:1053-587X
1941-0476
DOI:10.1109/78.650114