Receptor-specific contributions of caveolae, PKC, and Src tyrosine kinase to serotonergic and adrenergic regulation of Kv channels and vasoconstriction

Caveolae are invaginated, Ω-shaped membrane structures. They are now recognized as portals for signal transduction of multiple chemical and mechanical stimuli. Notably, the contribution of caveolae has been reported to be receptor-specific. However, details of how they differentially contribute to r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Life sciences (1973) 2023-09, Vol.328, p.121903, Article 121903
Hauptverfasser: Sung, Dong Jun, Park, Solah, Noh, Hyun Ju, Golpasandi, Shadi, Eun, Seo Hyeon, Lee, Hyeryeong, Kim, Bokyung, Wie, Jinhong, Seo, Mi Seon, Park, Sang Woong, Bae, Young Min
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Caveolae are invaginated, Ω-shaped membrane structures. They are now recognized as portals for signal transduction of multiple chemical and mechanical stimuli. Notably, the contribution of caveolae has been reported to be receptor-specific. However, details of how they differentially contribute to receptor signaling remain unclear. Using isometric tension measurements, patch-clamping, and western blotting, we examined the contribution of caveolae and their related signaling pathways to serotonergic (5-HT2A receptor-mediated) and adrenergic (α1-adrenoceptor-mediated) signaling in rat mesenteric arteries. Disruption of caveolae by methyl-β-cyclodextrin effectively blocked vasoconstriction mediated by the 5-HT2A receptor (5-HT2AR), but not by the α1-adrenoceptor. Caveolar disruption selectively impaired 5-HT2AR-mediated voltage-dependent K+ channel (Kv) inhibition, but not α1-adrenoceptor-mediated Kv inhibition. In contrast, both serotonergic and α1-adrenergic effects on vasoconstriction, as well as Kv currents, were similarly blocked by the Src tyrosine kinase inhibitor PP2. However, inhibition of protein kinase C (PKC) by either GO6976 or chelerythrine selectively attenuated the effects mediated by the α1-adrenoceptor, but not by 5-HT2AR. Disruption of caveolae decreased 5-HT2AR-mediated Src phosphorylation, but not α1-adrenoceptor-mediated Src phosphorylation. Finally, the PKC inhibitor GO6976 blocked Src phosphorylation by the α1-adrenoceptor, but not by 5-HT2AR. 5-HT2AR-mediated Kv inhibition and vasoconstriction are dependent on caveolar integrity and Src tyrosine kinase, but not on PKC. In contrast, α1-adrenoceptor-mediated Kv inhibition and vasoconstriction are not dependent on caveolar integrity, but rather on PKC and Src tyrosine kinase. Caveolae-independent PKC is upstream of Src activation for α1-adrenoceptor-mediated Kv inhibition and vasoconstriction. [Display omitted]
ISSN:0024-3205
1879-0631
1879-0631
DOI:10.1016/j.lfs.2023.121903