Perturbation solution for secondary bifurcation in the quadratically-damped Mathieu equation

This paper concerns the quadratically-damped Mathieu equation: x ̈ +(δ+ε cos t)x+ x ̇ | x ̇ |=0. Numerical integration shows the existence of a secondary bifurcation in which a pair of limit cycles come together and disappear (a saddle-node of limit cycles). In δ– ε parameter space, this secondary b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of non-linear mechanics 2004-04, Vol.39 (3), p.491-502
Hauptverfasser: Ramani, Deepak V, Keith, William L, Rand, Richard H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper concerns the quadratically-damped Mathieu equation: x ̈ +(δ+ε cos t)x+ x ̇ | x ̇ |=0. Numerical integration shows the existence of a secondary bifurcation in which a pair of limit cycles come together and disappear (a saddle-node of limit cycles). In δ– ε parameter space, this secondary bifurcation appears as a curve which emanates from one of the transition curves of the linear Mathieu equation for ε≈1.5. The bifurcation point along with an approximation for the bifurcation curve is obtained by a perturbation method which uses Mathieu functions rather than the usual sines and cosines.
ISSN:0020-7462
1878-5638
DOI:10.1016/S0020-7462(02)00218-4