Perturbation solution for secondary bifurcation in the quadratically-damped Mathieu equation
This paper concerns the quadratically-damped Mathieu equation: x ̈ +(δ+ε cos t)x+ x ̇ | x ̇ |=0. Numerical integration shows the existence of a secondary bifurcation in which a pair of limit cycles come together and disappear (a saddle-node of limit cycles). In δ– ε parameter space, this secondary b...
Gespeichert in:
Veröffentlicht in: | International journal of non-linear mechanics 2004-04, Vol.39 (3), p.491-502 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper concerns the quadratically-damped Mathieu equation:
x
̈
+(δ+ε
cos
t)x+
x
̇
|
x
̇
|=0.
Numerical integration shows the existence of a secondary bifurcation in which a pair of limit cycles come together and disappear (a saddle-node of limit cycles). In
δ–
ε parameter space, this secondary bifurcation appears as a curve which emanates from one of the
transition curves of the linear Mathieu equation for
ε≈1.5. The bifurcation point along with an approximation for the bifurcation curve is obtained by a perturbation method which uses Mathieu functions rather than the usual sines and cosines. |
---|---|
ISSN: | 0020-7462 1878-5638 |
DOI: | 10.1016/S0020-7462(02)00218-4 |