A mobile APP-based, customizable automated device for self-administered olfactory testing and an implementation of smell identification test
Abstract Olfactory tests are used for the evaluation of ability to detect and identify common odors in humans psychophysically. Olfactory tests are currently administered by professionals with a set of given odorants. Manual administration of such tests can be labor and cost intensive and data colle...
Gespeichert in:
Veröffentlicht in: | Chemical senses 2023-01, Vol.48 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
Olfactory tests are used for the evaluation of ability to detect and identify common odors in humans psychophysically. Olfactory tests are currently administered by professionals with a set of given odorants. Manual administration of such tests can be labor and cost intensive and data collected as such are confounded with experimental variables, which adds personnel costs and introduces potential errors and data variability. For large-scale and longitudinal studies, manually recorded data must be collected and compiled from multiple sites. It is difficult to standardize the way data are collected and recorded. There is a need for a computerized smell test system for psychophysical and clinical applications. A mobile digital olfactory testing system (DOTS) was developed, consisting of an odor delivery system (DOTS-ODD) and a mobile application program (DOTS-APP) connected wirelessly. The University of Pennsylvania Smell Identification Test was implemented in DOTS and compared to its commercial product on a cohort of 80 normosmic subjects and a clinical cohort of 12 Parkinson’s disease patients. A test–retest was conducted on 29 subjects of the normal cohort. The smell identification scores obtained from the DOTS and standard UPSIT commercial test are highly correlated (r = 0.714, P |
---|---|
ISSN: | 0379-864X 1464-3553 |
DOI: | 10.1093/chemse/bjad022 |