Photonic Hopfield neural network for the Ising problem
The Ising problem, a vital combinatorial optimization problem in various fields, is hard to solve by traditional Von Neumann computing architecture on a large scale. Thus, lots of application-specific physical architectures are reported, including quantum-based, electronics-based, and optical-based...
Gespeichert in:
Veröffentlicht in: | Optics express 2023-06, Vol.31 (13), p.21340-21350 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Ising problem, a vital combinatorial optimization problem in various fields, is hard to solve by traditional Von Neumann computing architecture on a large scale. Thus, lots of application-specific physical architectures are reported, including quantum-based, electronics-based, and optical-based platforms. A Hopfield neural network combined with a simulated annealing algorithm is considered one of the effective approaches but is still limited by large resource consumption. Here, we propose to accelerate the Hopfield network on a photonic integrated circuit composed of the arrays of Mach-Zehnder interferometer. Our proposed Photonic Hopfield Neural Network (PHNN), utilizing the massively parallel operations and integrated circuit with ultrafast iteration rate, converges to a stable ground state solution with high probability. The average success probabilities for the MaxCut problem with a problem size of 100 and the Spin-glass problem with a problem size of 60 can both reach more than 80%. Moreover, our proposed architecture is inherently robust to the noise induced by the imperfect characteristics of components on chip. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.491554 |