In vitro contact wear of dental composites

Objective. The aim of this study is to determine the in vitro two-body contact wear mechanisms of three medium filled composites and compare these with a highly filled composite previously investigated. Materials and methods. Three commercial dental composites with filler mass fraction loading of 75...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dental materials 2004, Vol.20 (1), p.63-71
Hauptverfasser: Nagarajan, Venkata S, Jahanmir, Said, Thompson, Van P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Objective. The aim of this study is to determine the in vitro two-body contact wear mechanisms of three medium filled composites and compare these with a highly filled composite previously investigated. Materials and methods. Three commercial dental composites with filler mass fraction loading of 75–76% were evaluated. Two of the composites contained Ba–B–Al-silicate glass fillers and fumed silica with different particle sizes and distributions. One of these composites contained a fairly uniform distribution of filler particles ranging in size from 1 to 5 μm, whereas the particle size distribution in the second composite was bimodal consisting of small (less than 1 μm) and large (about 10 μm) particles. The third composite contained Ba–Al-silicate glass and silica with a filler particle size of approximately 1 μm. The composite disks were tested for wear against harder alumina counterfaces. Wear tests were conducted in distilled water using a pin-on-disk tribometer under conditions that represented typical oral conditions (sliding speed of 2.5 mm/s and contact loads ranging from 1 to 20 N). The wear tracks were analyzed by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy to elucidate the wear mechanisms. The chemical composition of the water solution collected after the tests was determined using an inductively coupled plasma-mass spectrometer (ICP-MS) to detect possible chemical changes, e.g. dissolution of trace elements due to submersion or wear. The wear results were compared with those reported in an earlier study on a highly filled composite containing predominately alumino-silicate glass fillers and alumina at a filler loading of 92%. Results. The differences in two-body wear rates between the three medium filled composites were not statistically significant ( p
ISSN:0109-5641
1879-0097
DOI:10.1016/S0109-5641(03)00069-1