Effect of frequency on the classical and relaxor ferroelectric behavior of substituted titanate Ba0.7Er0.16Ca0.05Ti0.91Sn0.09O3

In the present work, we synthesized the perovskite Ba0.70Er0.16Ca0.05Ti0.91Sn0.09O3 compound (BECTSO) by a solid-state reaction and sintering at 1200 °C. The effects of doping on the structural, electrical, dielectric, and ferroelectric characteristics of the material are examined in this work. X-ra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2023-07, Vol.25 (27), p.17999-18010
Hauptverfasser: Saidi, A, Mabrouki, A, Dhahri, J, Dhahri, E, Khirouni, K, Costa, B F O
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the present work, we synthesized the perovskite Ba0.70Er0.16Ca0.05Ti0.91Sn0.09O3 compound (BECTSO) by a solid-state reaction and sintering at 1200 °C. The effects of doping on the structural, electrical, dielectric, and ferroelectric characteristics of the material are examined in this work. X-ray powder diffraction analysis shows that BECTSO crystallizes in a tetragonal structure with space group P4mm. A detailed study of the dielectric relaxation of the BECTSO compound has been reported for the first time. Classical low-frequency ferroelectric and high-frequency relaxor ferroelectric behaviors have been studied. The study of the real part of the permittivity (ϵ′) as a function of temperature demonstrated a high dielectric constant and identified a phase transition from the ferroelectric phase to the paraelectric phase at Tc = 360 K. The analysis of conductivity curves shows two behaviors: semiconductor behavior for f < 106 Hz and metallic behavior for f >106 Hz. The relaxation phenomenon is dominated by the short-range motion of the charge carriers. The BECTSO sample could be considered as a potential lead-free material for next-generation non-volatile memory devices and wide-temperature range capacitor applications.
ISSN:1463-9076
1463-9084
DOI:10.1039/d3cp01273e