Effect of frequency on the classical and relaxor ferroelectric behavior of substituted titanate Ba0.7Er0.16Ca0.05Ti0.91Sn0.09O3
In the present work, we synthesized the perovskite Ba0.70Er0.16Ca0.05Ti0.91Sn0.09O3 compound (BECTSO) by a solid-state reaction and sintering at 1200 °C. The effects of doping on the structural, electrical, dielectric, and ferroelectric characteristics of the material are examined in this work. X-ra...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2023-07, Vol.25 (27), p.17999-18010 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the present work, we synthesized the perovskite Ba0.70Er0.16Ca0.05Ti0.91Sn0.09O3 compound (BECTSO) by a solid-state reaction and sintering at 1200 °C. The effects of doping on the structural, electrical, dielectric, and ferroelectric characteristics of the material are examined in this work. X-ray powder diffraction analysis shows that BECTSO crystallizes in a tetragonal structure with space group P4mm. A detailed study of the dielectric relaxation of the BECTSO compound has been reported for the first time. Classical low-frequency ferroelectric and high-frequency relaxor ferroelectric behaviors have been studied. The study of the real part of the permittivity (ϵ′) as a function of temperature demonstrated a high dielectric constant and identified a phase transition from the ferroelectric phase to the paraelectric phase at Tc = 360 K. The analysis of conductivity curves shows two behaviors: semiconductor behavior for f < 106 Hz and metallic behavior for f >106 Hz. The relaxation phenomenon is dominated by the short-range motion of the charge carriers. The BECTSO sample could be considered as a potential lead-free material for next-generation non-volatile memory devices and wide-temperature range capacitor applications. |
---|---|
ISSN: | 1463-9076 1463-9084 |
DOI: | 10.1039/d3cp01273e |