A growable packet (ATM) switch architecture: design principles and application

The problem of designing a large high-performance, broadband packet of ATM (asynchronous transfer mode) switch is discussed. Ways to construct arbitrarily large switches out of modest-size packet switches without sacrificing overall delay/throughput performance are presented. A growable switch archi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on communications 1992-02, Vol.40 (2), p.423-430
Hauptverfasser: Eng, K.Y., Karol, M.J., Yeh, Y.-S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The problem of designing a large high-performance, broadband packet of ATM (asynchronous transfer mode) switch is discussed. Ways to construct arbitrarily large switches out of modest-size packet switches without sacrificing overall delay/throughput performance are presented. A growable switch architecture is presented that is based on three key principles: a generalized knockout principle exploits the statistical behaviour of packet arrivals and thereby reduces the interconnect complexity, output queuing yields the best possible delay/throughput performance, and distributed intelligence in routing packets through the interconnect fabric eliminates internal path conflicts. Features of the architecture include the guarantee of first-in-first-out packet sequence, broadcast and multicast capabilities, and compatibility with variable-length packets, which avoids the need for packet-size standardization. As a broadband ISDN example, a 2048*2048 configuration with building blocks of 42*16 packet switch modules and 128*128 interconnect modules, both of which fall within existing hardware capabilities, is presented.< >
ISSN:0090-6778
1558-0857
DOI:10.1109/26.129204