Frequency-stabilized mode-locked solid-state laser system for precision range-Doppler imaging
We report measurements which show that an actively stabilized cw mode-locked Nd:YLF laser, in combination with a flashlamp-pumped Nd:glass amplifier, can achieve better than 1 cm resolution of distant rotating targets using range-Doppler imaging. To do this, we have produced trains of 50 ps mode-loc...
Gespeichert in:
Veröffentlicht in: | IEEE journal of quantum electronics 1993-09, Vol.29 (9), p.2489-2496 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report measurements which show that an actively stabilized cw mode-locked Nd:YLF laser, in combination with a flashlamp-pumped Nd:glass amplifier, can achieve better than 1 cm resolution of distant rotating targets using range-Doppler imaging. To do this, we have produced trains of 50 ps mode-locked pulses with less than 25 kHz peak-to-peak optical frequency broadening and jitter of the laser modes. This frequency stability is achieved by active control of the oscillator cavity length using an external cavity as a reference. Cavity length stabilization can also reduce mode-locked laser timing jitter if the jitter is caused by cavity optical path length changes common to all laser modes. In our laser, however, the active optical-frequency-stabilization did not significantly improve laser pulse timing stability from the approximate 2-ps jitter levels achieved in our passively stabilized cavity. Analysis of the data indicates that a significant fraction of the timing jitter was due to laser cavity path length changes that varied from mode to mode.< > |
---|---|
ISSN: | 0018-9197 1558-1713 |
DOI: | 10.1109/3.247706 |