Activation-Assisted High-Concentration Phosphorus-Doping to Enhance the Electrochemical Performance of Cobalt Carbonate Hydroxide Hydrate
P-doping into metal oxides has been demonstrated as a valid avenue to ameliorate electrochemical performance because it can tune the electronic structures and increase the active sites for an electrochemical reaction. However, it usually results in a low P-doping concentration via the commonly used...
Gespeichert in:
Veröffentlicht in: | Inorganic chemistry 2023-07, Vol.62 (27), p.10704-10712 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | P-doping into metal oxides has been demonstrated as a valid avenue to ameliorate electrochemical performance because it can tune the electronic structures and increase the active sites for an electrochemical reaction. However, it usually results in a low P-doping concentration via the commonly used gas phosphorization method. In this work, an activation-assisted P-doping strategy was explored to significantly raise the P-doping concentration in cobalt carbonate hydroxide hydrate (CCHH). The activation treatment increased active sites for electrochemical reaction and endowed the sample with a high P content in the subsequent gas phosphorization process, thereby greatly enhancing the conductivity of the sample. Therefore, the final CCHH-A-P electrode exhibited a high capacitance of 6.62 F cm–2 at 5 mA cm–2 and good cyclic stability. In addition, the CCHH-A-P//CC ASC with CCHH-A-P as the positive electrode and carbon cloth as the negative electrode provided a high energy density of 0.25 mWh cm–2 at 4 mW cm–2 as well as excellent cycling performance with capacitance retention of 91.2% after 20,000 cycles. Our work shows an effective strategy to acquire Co-based materials with high-concentration P-doping that holds great potential in boosting the electrochemical performance of electrode materials via P-doping technology. |
---|---|
ISSN: | 0020-1669 1520-510X |
DOI: | 10.1021/acs.inorgchem.3c01159 |