Operando electron microscopy investigation of polar domain dynamics in twisted van der Waals homobilayers

Conventional antiferroelectric materials with atomic-scale anti-aligned dipoles undergo a transition to a ferroelectric (FE) phase under strong electric fields. The moiré superlattice formed in the twisted stacks of van der Waals crystals exhibits polar domains alternating in moiré length with anti-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2023-08, Vol.22 (8), p.992-998
Hauptverfasser: Ko, Kahyun, Yuk, Ayoung, Engelke, Rebecca, Carr, Stephen, Kim, Junhyung, Park, Daesung, Heo, Hoseok, Kim, Hyun-Mi, Kim, Seul-Gi, Kim, Hyeongkeun, Taniguchi, Takashi, Watanabe, Kenji, Park, Hongkun, Kaxiras, Efthimios, Yang, Sang Mo, Kim, Philip, Yoo, Hyobin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Conventional antiferroelectric materials with atomic-scale anti-aligned dipoles undergo a transition to a ferroelectric (FE) phase under strong electric fields. The moiré superlattice formed in the twisted stacks of van der Waals crystals exhibits polar domains alternating in moiré length with anti-aligned dipoles. In this moiré domain antiferroelectic (MDAF) arrangement, the distribution of electric dipoles is distinguished from that of two-dimensional FEs, suggesting dissimilar domain dynamics. Here we performed an operando transmission electron microscopy investigation on twisted bilayer WSe 2 to observe the polar domain dynamics in real time. We find that the topological protection, provided by the domain wall network, prevents the MDAF-to-FE transition. As one decreases the twist angle, however, this transition occurs as the domain wall network disappears. Exploiting stroboscopic operando transmission electron microscopy on the FE phase, we measure a maximum domain wall velocity of 300 μm s –1 . Domain wall pinnings by various disorders limit the domain wall velocity and cause Barkhausen noises in the polarization hysteresis loop. Atomic-scale analysis of the pinning disorders provides structural insight on how to improve the switching speed of van der Waals FEs. Polar domains have been observed in twist-stacked van der Waals layers, but their dynamics are unexplored. Here, using operando electron microscopy, it is found that polar domains in an antiferroelectric arrangement cannot transition to a ferroelectric state due to topological protection of the domain wall network.
ISSN:1476-1122
1476-4660
DOI:10.1038/s41563-023-01595-0