High energy electron induced displacement damage in silicon
New measurements of displacement damage factors for electron-irradiated (4 to 53 MeV) bipolar silicon transistors have extended the correlation between nonionizing energy loss and damage factors reported previously another three orders of magnitude downward, to cover a total of six decades. To first...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on nuclear science 1988-12, Vol.35 (6), p.1208-1214 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | New measurements of displacement damage factors for electron-irradiated (4 to 53 MeV) bipolar silicon transistors have extended the correlation between nonionizing energy loss and damage factors reported previously another three orders of magnitude downward, to cover a total of six decades. To first order, the correlation remains linear for both n- and p-type silicon, but deviations are observed and explained in terms of differences in the fraction of initial vacancy interstitial pairs that recombines. These differences correlate linearly with the low-energy component of the PKA spectrum. Deep level transient spectroscopy measurements show oxygen- and dopant-related defect levels as well as divacancies. Defect concentrations scaled linearly with gain degradation, and no differences were seen between electron and proton plus neutron irradiated material. The results are consistent with a damage mechanism involving migration of vacancies to form well-separated stable defects.< > |
---|---|
ISSN: | 0018-9499 1558-1578 |
DOI: | 10.1109/23.25441 |