Diet-induced changes in fecal microbiota composition and diversity in dogs (Canis lupus familiaris): A comparative study of BARF-type and commercial diets

Diet is known to strongly modulate the composition of the gut microbiota, thereby affecting health conditions and disease. Natural BARF-type and commercial diets have been used for feeding pets (e.g. dogs and cats) promoting changes in the canine microbiota in terms of abundance, richness, and diver...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Comparative immunology, microbiology and infectious diseases microbiology and infectious diseases, 2023-07, Vol.98, p.102007-102007, Article 102007
Hauptverfasser: Castañeda, Sergio, Ariza, Gineth, Rincón-Riveros, Andres, Muñoz, Marina, Ramírez, Juan David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Diet is known to strongly modulate the composition of the gut microbiota, thereby affecting health conditions and disease. Natural BARF-type and commercial diets have been used for feeding pets (e.g. dogs and cats) promoting changes in the canine microbiota in terms of abundance, richness, and diversity that may favor certain metabolic processes and resistance to certain infectious agents. Therefore, the present study sought to identify microbiota changes in dogs fed with a BARF-type diet versus dogs fed with a commercial diet by sequencing the V4 region of the 16S rRNA gene. The microbiota of dogs fed with the BARF-diet (n = 20) and commercial-diet (n = 26) was studied using fecal samples. A metabarcoding strategy was employed by sequencing the V4 hypervariable region of the 16S rRNA gene using the Illumina HiSeq platform. DADA2 was used to assess the quality profile of the reads and to determine the core sample inference algorithm of the reads to infer amplicon sequence variants (ASVs). The taxonomic assignment was performed using sequences from the Silva v138 formatted reference database. The microbial diversity analysis was performed using the R package Phyloseq, which was used to calculate diversity and abundance indices and construct the respective graphs. Linear discriminant analysis (LDA) effect size analysis (LEfSe) was used to identify the differentially abundant taxa in the BARF group versus the commercial-diet group. The diet causes changes in fecal microbiota composition and diversity, with richness and diversity being higher in BARF-fed dogs. Beta diversity analyses confirmed that diet is directly related to microbiota composition regardless of breed or sex. Differentially enriched taxa were identified in each of the diets as Fusobacterium, Bacteroides, and Clostridium perfringens in BARF-fed dogs and Prevotella, Turicibacter, Faecalibacterium, and Peptacetobacter (Clostridium) hiranonis, mostly relevant in carbohydrate metabolism, in commercial-fed dogs. This study is the first one carried out in dogs from Colombia that seeks to identify changes in the intestinal microbiota concerning natural BARF type diet and commercial diet using a metabarcoding approach. Important differences were identified in terms of richness, diversity, and differentially enriched bacteria in each of the diets. The microbiota of dogs fed the BARF diet was characterized by higher richness and diversity compared to the commercial diet. However, it was identified that B
ISSN:0147-9571
1878-1667
DOI:10.1016/j.cimid.2023.102007