Fast and accurate algorithm for the short-pulse electromagnetic scattering from conducting circular plates buried inside a lossy dispersive half-space

The method of moments in the Hankel transform domain is applied to the determination of the fields scattered by a conducting circular plate buried in a lossy dispersive half-space when the plate is illuminated by a plane wave. The scattered fields obtained in the frequency domain are used to model t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2003-05, Vol.41 (5), p.988-997
Hauptverfasser: Losada, V., Boix, R.R., Medina, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The method of moments in the Hankel transform domain is applied to the determination of the fields scattered by a conducting circular plate buried in a lossy dispersive half-space when the plate is illuminated by a plane wave. The scattered fields obtained in the frequency domain are used to model the time-domain short-pulse scattering via the inverse fast Fourier transform. The authors show that the choice of adequate basis functions in the approximation of the current density induced on the plate makes it possible to obtain very accurate results for the scattered fields while using low computer memory requirements and short CPU times. This implies that the algorithm developed for the particular problem treated in this paper provides a good benchmark for the validation of any other numerical algorithms dealing with the analysis of the scattering from buried conducting objects with more complex geometry.
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2003.810678