Fluorescence-amplified nanocrystals in the second near-infrared window for in vivo real-time dynamic multiplexed imaging
Optical imaging in the second near-infrared window (NIR-II, 1,000–1,700 nm) holds great promise for non-invasive in vivo detection. However, real-time dynamic multiplexed imaging remains challenging due to the lack of available fluorescence probes and multiplexing techniques in the ideal NIR-IIb (1,...
Gespeichert in:
Veröffentlicht in: | Nature nanotechnology 2023-10, Vol.18 (10), p.1195-1204 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1204 |
---|---|
container_issue | 10 |
container_start_page | 1195 |
container_title | Nature nanotechnology |
container_volume | 18 |
creator | Yang, Yiwei Chen, Ying Pei, Peng Fan, Yong Wang, Shangfeng Zhang, Hongxin Zhao, Dongyuan Qian, Bin-Zhi Zhang, Fan |
description | Optical imaging in the second near-infrared window (NIR-II, 1,000–1,700 nm) holds great promise for non-invasive in vivo detection. However, real-time dynamic multiplexed imaging remains challenging due to the lack of available fluorescence probes and multiplexing techniques in the ideal NIR-IIb (1,500–1,700 nm) ‘deep-tissue-transparent’ sub-window. Here we report on thulium-based cubic-phase downshifting nanoparticles (α-TmNPs) with 1,632 nm fluorescence amplification. This strategy was also validated for the fluorescence enhancement of nanoparticles doped with NIR-II Er
3+
(α-ErNPs) or Ho
3+
(α-HoNPs). In parallel, we developed a simultaneous dual-channel imaging system with high spatiotemporal synchronization and accuracy. The NIR-IIb α-TmNPs and α-ErNPs facilitated the non-invasive real-time dynamic multiplexed imaging of cerebrovascular vasomotion activity and the single-cell-level neutrophil behaviour in mouse subcutaneous tissue and ischaemic stroke model.
Lanthanide downshifting nanoparticles with tunable emissions in the NIR-IIb sub-window (1,500–1,700 nm) region are ideal for deep-tissue imaging. Biofunctionalized core–shell, cubic-phase thulium-based nanoprobes show the non-invasive imaging of murine cerebral vasculature and the tracking of single immune cells and their extravasation in an inflammatory microenvironment. |
doi_str_mv | 10.1038/s41565-023-01422-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2829429294</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2829429294</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-5dbb5e2cc134b0fd67297f992db1f232baf4792f7715421e306a23a53fc874413</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxS1ERf_AF-CAInHpxdQe23FyRFULlSpxgbPlOOPFVWIvdtJ2v329bCkSB04eaX7veWYeIe85-8SZ6C6K5KpVlIGgjEsACq_ICdeyo0L06vVL3eljclrKHWMKepBvyLHQQvaKtSfk8XpaU8biMDqkdt5OwQccm2hjcnlXFjuVJsRm-YlNQZdibaHNNESfba7gQ4hjemh8ynvsPtynJqOd6BJmbMZdtHNwzbxOS9hO-FgFYbabEDdvyZGv3vju-T0jP66vvl9-pbffvtxcfr6lTmi1UDUOg0Jwjgs5MD-2Gnrt-x7GgXsQMFgvdQ9ea64kcBSstSCsEt51Wkouzsj5wXeb068Vy2LmULedJhsxrcVAB72sZ-llRT_-g96lNcc6XaV0q3XH9d4QDpTLqZSM3mxz3SnvDGdmn4s55GJqLuZ3Lgaq6MOz9TrMOL5I_gRRAXEASm3FDea_f__H9gk05pmo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2876778171</pqid></control><display><type>article</type><title>Fluorescence-amplified nanocrystals in the second near-infrared window for in vivo real-time dynamic multiplexed imaging</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Yang, Yiwei ; Chen, Ying ; Pei, Peng ; Fan, Yong ; Wang, Shangfeng ; Zhang, Hongxin ; Zhao, Dongyuan ; Qian, Bin-Zhi ; Zhang, Fan</creator><creatorcontrib>Yang, Yiwei ; Chen, Ying ; Pei, Peng ; Fan, Yong ; Wang, Shangfeng ; Zhang, Hongxin ; Zhao, Dongyuan ; Qian, Bin-Zhi ; Zhang, Fan</creatorcontrib><description>Optical imaging in the second near-infrared window (NIR-II, 1,000–1,700 nm) holds great promise for non-invasive in vivo detection. However, real-time dynamic multiplexed imaging remains challenging due to the lack of available fluorescence probes and multiplexing techniques in the ideal NIR-IIb (1,500–1,700 nm) ‘deep-tissue-transparent’ sub-window. Here we report on thulium-based cubic-phase downshifting nanoparticles (α-TmNPs) with 1,632 nm fluorescence amplification. This strategy was also validated for the fluorescence enhancement of nanoparticles doped with NIR-II Er
3+
(α-ErNPs) or Ho
3+
(α-HoNPs). In parallel, we developed a simultaneous dual-channel imaging system with high spatiotemporal synchronization and accuracy. The NIR-IIb α-TmNPs and α-ErNPs facilitated the non-invasive real-time dynamic multiplexed imaging of cerebrovascular vasomotion activity and the single-cell-level neutrophil behaviour in mouse subcutaneous tissue and ischaemic stroke model.
Lanthanide downshifting nanoparticles with tunable emissions in the NIR-IIb sub-window (1,500–1,700 nm) region are ideal for deep-tissue imaging. Biofunctionalized core–shell, cubic-phase thulium-based nanoprobes show the non-invasive imaging of murine cerebral vasculature and the tracking of single immune cells and their extravasation in an inflammatory microenvironment.</description><identifier>ISSN: 1748-3387</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/s41565-023-01422-2</identifier><identifier>PMID: 37349506</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/638/11/942 ; 639/925/357/354 ; Amplification ; Chemistry and Materials Science ; Erbium ; Extravasation ; Fluorescence ; Fluorescent indicators ; Holmium ; I.R. radiation ; Imaging ; Immune system ; Inflammation ; Infrared windows ; Ischemia ; Leukocytes (neutrophilic) ; Materials Science ; Multiplexing ; Nanocrystals ; Nanoparticles ; Nanotechnology ; Nanotechnology and Microengineering ; Near infrared radiation ; Real time ; Synchronism ; Synchronization ; Thulium</subject><ispartof>Nature nanotechnology, 2023-10, Vol.18 (10), p.1195-1204</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer Nature Limited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-5dbb5e2cc134b0fd67297f992db1f232baf4792f7715421e306a23a53fc874413</citedby><cites>FETCH-LOGICAL-c375t-5dbb5e2cc134b0fd67297f992db1f232baf4792f7715421e306a23a53fc874413</cites><orcidid>0000-0003-2247-7558 ; 0000-0001-5220-9445 ; 0000-0002-1934-2049 ; 0000-0001-7886-6144 ; 0000-0001-8440-6902 ; 0000-0002-5796-1078</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41565-023-01422-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41565-023-01422-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37349506$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Yiwei</creatorcontrib><creatorcontrib>Chen, Ying</creatorcontrib><creatorcontrib>Pei, Peng</creatorcontrib><creatorcontrib>Fan, Yong</creatorcontrib><creatorcontrib>Wang, Shangfeng</creatorcontrib><creatorcontrib>Zhang, Hongxin</creatorcontrib><creatorcontrib>Zhao, Dongyuan</creatorcontrib><creatorcontrib>Qian, Bin-Zhi</creatorcontrib><creatorcontrib>Zhang, Fan</creatorcontrib><title>Fluorescence-amplified nanocrystals in the second near-infrared window for in vivo real-time dynamic multiplexed imaging</title><title>Nature nanotechnology</title><addtitle>Nat. Nanotechnol</addtitle><addtitle>Nat Nanotechnol</addtitle><description>Optical imaging in the second near-infrared window (NIR-II, 1,000–1,700 nm) holds great promise for non-invasive in vivo detection. However, real-time dynamic multiplexed imaging remains challenging due to the lack of available fluorescence probes and multiplexing techniques in the ideal NIR-IIb (1,500–1,700 nm) ‘deep-tissue-transparent’ sub-window. Here we report on thulium-based cubic-phase downshifting nanoparticles (α-TmNPs) with 1,632 nm fluorescence amplification. This strategy was also validated for the fluorescence enhancement of nanoparticles doped with NIR-II Er
3+
(α-ErNPs) or Ho
3+
(α-HoNPs). In parallel, we developed a simultaneous dual-channel imaging system with high spatiotemporal synchronization and accuracy. The NIR-IIb α-TmNPs and α-ErNPs facilitated the non-invasive real-time dynamic multiplexed imaging of cerebrovascular vasomotion activity and the single-cell-level neutrophil behaviour in mouse subcutaneous tissue and ischaemic stroke model.
Lanthanide downshifting nanoparticles with tunable emissions in the NIR-IIb sub-window (1,500–1,700 nm) region are ideal for deep-tissue imaging. Biofunctionalized core–shell, cubic-phase thulium-based nanoprobes show the non-invasive imaging of murine cerebral vasculature and the tracking of single immune cells and their extravasation in an inflammatory microenvironment.</description><subject>639/638/11/942</subject><subject>639/925/357/354</subject><subject>Amplification</subject><subject>Chemistry and Materials Science</subject><subject>Erbium</subject><subject>Extravasation</subject><subject>Fluorescence</subject><subject>Fluorescent indicators</subject><subject>Holmium</subject><subject>I.R. radiation</subject><subject>Imaging</subject><subject>Immune system</subject><subject>Inflammation</subject><subject>Infrared windows</subject><subject>Ischemia</subject><subject>Leukocytes (neutrophilic)</subject><subject>Materials Science</subject><subject>Multiplexing</subject><subject>Nanocrystals</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Near infrared radiation</subject><subject>Real time</subject><subject>Synchronism</subject><subject>Synchronization</subject><subject>Thulium</subject><issn>1748-3387</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kU9v1DAQxS1ERf_AF-CAInHpxdQe23FyRFULlSpxgbPlOOPFVWIvdtJ2v329bCkSB04eaX7veWYeIe85-8SZ6C6K5KpVlIGgjEsACq_ICdeyo0L06vVL3eljclrKHWMKepBvyLHQQvaKtSfk8XpaU8biMDqkdt5OwQccm2hjcnlXFjuVJsRm-YlNQZdibaHNNESfba7gQ4hjemh8ynvsPtynJqOd6BJmbMZdtHNwzbxOS9hO-FgFYbabEDdvyZGv3vju-T0jP66vvl9-pbffvtxcfr6lTmi1UDUOg0Jwjgs5MD-2Gnrt-x7GgXsQMFgvdQ9ea64kcBSstSCsEt51Wkouzsj5wXeb068Vy2LmULedJhsxrcVAB72sZ-llRT_-g96lNcc6XaV0q3XH9d4QDpTLqZSM3mxz3SnvDGdmn4s55GJqLuZ3Lgaq6MOz9TrMOL5I_gRRAXEASm3FDea_f__H9gk05pmo</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Yang, Yiwei</creator><creator>Chen, Ying</creator><creator>Pei, Peng</creator><creator>Fan, Yong</creator><creator>Wang, Shangfeng</creator><creator>Zhang, Hongxin</creator><creator>Zhao, Dongyuan</creator><creator>Qian, Bin-Zhi</creator><creator>Zhang, Fan</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2247-7558</orcidid><orcidid>https://orcid.org/0000-0001-5220-9445</orcidid><orcidid>https://orcid.org/0000-0002-1934-2049</orcidid><orcidid>https://orcid.org/0000-0001-7886-6144</orcidid><orcidid>https://orcid.org/0000-0001-8440-6902</orcidid><orcidid>https://orcid.org/0000-0002-5796-1078</orcidid></search><sort><creationdate>20231001</creationdate><title>Fluorescence-amplified nanocrystals in the second near-infrared window for in vivo real-time dynamic multiplexed imaging</title><author>Yang, Yiwei ; Chen, Ying ; Pei, Peng ; Fan, Yong ; Wang, Shangfeng ; Zhang, Hongxin ; Zhao, Dongyuan ; Qian, Bin-Zhi ; Zhang, Fan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-5dbb5e2cc134b0fd67297f992db1f232baf4792f7715421e306a23a53fc874413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>639/638/11/942</topic><topic>639/925/357/354</topic><topic>Amplification</topic><topic>Chemistry and Materials Science</topic><topic>Erbium</topic><topic>Extravasation</topic><topic>Fluorescence</topic><topic>Fluorescent indicators</topic><topic>Holmium</topic><topic>I.R. radiation</topic><topic>Imaging</topic><topic>Immune system</topic><topic>Inflammation</topic><topic>Infrared windows</topic><topic>Ischemia</topic><topic>Leukocytes (neutrophilic)</topic><topic>Materials Science</topic><topic>Multiplexing</topic><topic>Nanocrystals</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Near infrared radiation</topic><topic>Real time</topic><topic>Synchronism</topic><topic>Synchronization</topic><topic>Thulium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yiwei</creatorcontrib><creatorcontrib>Chen, Ying</creatorcontrib><creatorcontrib>Pei, Peng</creatorcontrib><creatorcontrib>Fan, Yong</creatorcontrib><creatorcontrib>Wang, Shangfeng</creatorcontrib><creatorcontrib>Zhang, Hongxin</creatorcontrib><creatorcontrib>Zhao, Dongyuan</creatorcontrib><creatorcontrib>Qian, Bin-Zhi</creatorcontrib><creatorcontrib>Zhang, Fan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Yiwei</au><au>Chen, Ying</au><au>Pei, Peng</au><au>Fan, Yong</au><au>Wang, Shangfeng</au><au>Zhang, Hongxin</au><au>Zhao, Dongyuan</au><au>Qian, Bin-Zhi</au><au>Zhang, Fan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fluorescence-amplified nanocrystals in the second near-infrared window for in vivo real-time dynamic multiplexed imaging</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nat. Nanotechnol</stitle><addtitle>Nat Nanotechnol</addtitle><date>2023-10-01</date><risdate>2023</risdate><volume>18</volume><issue>10</issue><spage>1195</spage><epage>1204</epage><pages>1195-1204</pages><issn>1748-3387</issn><eissn>1748-3395</eissn><abstract>Optical imaging in the second near-infrared window (NIR-II, 1,000–1,700 nm) holds great promise for non-invasive in vivo detection. However, real-time dynamic multiplexed imaging remains challenging due to the lack of available fluorescence probes and multiplexing techniques in the ideal NIR-IIb (1,500–1,700 nm) ‘deep-tissue-transparent’ sub-window. Here we report on thulium-based cubic-phase downshifting nanoparticles (α-TmNPs) with 1,632 nm fluorescence amplification. This strategy was also validated for the fluorescence enhancement of nanoparticles doped with NIR-II Er
3+
(α-ErNPs) or Ho
3+
(α-HoNPs). In parallel, we developed a simultaneous dual-channel imaging system with high spatiotemporal synchronization and accuracy. The NIR-IIb α-TmNPs and α-ErNPs facilitated the non-invasive real-time dynamic multiplexed imaging of cerebrovascular vasomotion activity and the single-cell-level neutrophil behaviour in mouse subcutaneous tissue and ischaemic stroke model.
Lanthanide downshifting nanoparticles with tunable emissions in the NIR-IIb sub-window (1,500–1,700 nm) region are ideal for deep-tissue imaging. Biofunctionalized core–shell, cubic-phase thulium-based nanoprobes show the non-invasive imaging of murine cerebral vasculature and the tracking of single immune cells and their extravasation in an inflammatory microenvironment.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37349506</pmid><doi>10.1038/s41565-023-01422-2</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2247-7558</orcidid><orcidid>https://orcid.org/0000-0001-5220-9445</orcidid><orcidid>https://orcid.org/0000-0002-1934-2049</orcidid><orcidid>https://orcid.org/0000-0001-7886-6144</orcidid><orcidid>https://orcid.org/0000-0001-8440-6902</orcidid><orcidid>https://orcid.org/0000-0002-5796-1078</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-3387 |
ispartof | Nature nanotechnology, 2023-10, Vol.18 (10), p.1195-1204 |
issn | 1748-3387 1748-3395 |
language | eng |
recordid | cdi_proquest_miscellaneous_2829429294 |
source | SpringerLink Journals; Nature Journals Online |
subjects | 639/638/11/942 639/925/357/354 Amplification Chemistry and Materials Science Erbium Extravasation Fluorescence Fluorescent indicators Holmium I.R. radiation Imaging Immune system Inflammation Infrared windows Ischemia Leukocytes (neutrophilic) Materials Science Multiplexing Nanocrystals Nanoparticles Nanotechnology Nanotechnology and Microengineering Near infrared radiation Real time Synchronism Synchronization Thulium |
title | Fluorescence-amplified nanocrystals in the second near-infrared window for in vivo real-time dynamic multiplexed imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T12%3A37%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fluorescence-amplified%20nanocrystals%20in%20the%20second%20near-infrared%20window%20for%20in%20vivo%20real-time%20dynamic%20multiplexed%20imaging&rft.jtitle=Nature%20nanotechnology&rft.au=Yang,%20Yiwei&rft.date=2023-10-01&rft.volume=18&rft.issue=10&rft.spage=1195&rft.epage=1204&rft.pages=1195-1204&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/s41565-023-01422-2&rft_dat=%3Cproquest_cross%3E2829429294%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2876778171&rft_id=info:pmid/37349506&rfr_iscdi=true |