Fluorescence-amplified nanocrystals in the second near-infrared window for in vivo real-time dynamic multiplexed imaging
Optical imaging in the second near-infrared window (NIR-II, 1,000–1,700 nm) holds great promise for non-invasive in vivo detection. However, real-time dynamic multiplexed imaging remains challenging due to the lack of available fluorescence probes and multiplexing techniques in the ideal NIR-IIb (1,...
Gespeichert in:
Veröffentlicht in: | Nature nanotechnology 2023-10, Vol.18 (10), p.1195-1204 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Optical imaging in the second near-infrared window (NIR-II, 1,000–1,700 nm) holds great promise for non-invasive in vivo detection. However, real-time dynamic multiplexed imaging remains challenging due to the lack of available fluorescence probes and multiplexing techniques in the ideal NIR-IIb (1,500–1,700 nm) ‘deep-tissue-transparent’ sub-window. Here we report on thulium-based cubic-phase downshifting nanoparticles (α-TmNPs) with 1,632 nm fluorescence amplification. This strategy was also validated for the fluorescence enhancement of nanoparticles doped with NIR-II Er
3+
(α-ErNPs) or Ho
3+
(α-HoNPs). In parallel, we developed a simultaneous dual-channel imaging system with high spatiotemporal synchronization and accuracy. The NIR-IIb α-TmNPs and α-ErNPs facilitated the non-invasive real-time dynamic multiplexed imaging of cerebrovascular vasomotion activity and the single-cell-level neutrophil behaviour in mouse subcutaneous tissue and ischaemic stroke model.
Lanthanide downshifting nanoparticles with tunable emissions in the NIR-IIb sub-window (1,500–1,700 nm) region are ideal for deep-tissue imaging. Biofunctionalized core–shell, cubic-phase thulium-based nanoprobes show the non-invasive imaging of murine cerebral vasculature and the tracking of single immune cells and their extravasation in an inflammatory microenvironment. |
---|---|
ISSN: | 1748-3387 1748-3395 |
DOI: | 10.1038/s41565-023-01422-2 |