ZIF-90-Derived Porous ZnO Coated Optical Microfiber Interferometer Sensor for Enhanced Humidity Sensing and Breath Monitoring
Humidity plays an important role in many fields, and the realization of high sensitivity and fast response simultaneously for humidity detection is a great challenge in practical application. In this work, we demonstrated a high-performance relative humidity (RH) sensor made by supporting zeolitic i...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2023-07, Vol.15 (26), p.32057-32065 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Humidity plays an important role in many fields, and the realization of high sensitivity and fast response simultaneously for humidity detection is a great challenge in practical application. In this work, we demonstrated a high-performance relative humidity (RH) sensor made by supporting zeolitic imidazolate framework-90 (ZIF-90)-derived porous zinc oxide (ZnO) onto an optical microfiber Sagnac interferometer (OMSI). The ZIF-90-modified OMSI (ZIF-90-OMSI) sensor was in situ heated at different temperatures to obtain porous ZnO, and their humidity-sensing properties were investigated ranging from 25 to 80% RH. The experimental results showed that the porous ZnO fiber sensor prepared at 500 °C (Z500-OMSI) exhibited best humidity-sensing performance with a high sensitivity of 96.2 pm/% RH (25–45% RH) and 521 pm/% RH (50–80% RH) and ultrafast response/recovery time (62.37/206.67 ms) at 22.3% RH. These performances were attributed to the complete transformation of ZIF-90 to ZnO at 500 °C. The obtained Z500 not only retained the high porosity and specific surface area of ZIF-90 but also exhibited the exceptional hydrophilicity of ZnO. In addition, the signals of the proposed Z500-OMSI sensor changed with different breathing patterns, indicating the possibility for human respiration monitoring. This work provided a reliable candidate for an effective RH monitoring system with potential application in medical diagnoses, industrial production, environmental detection, and human health monitoring. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.3c06635 |