Fault-tolerant array processors using single-track switches

An array grid model based on single-track switches is proposed. A reconfigurability theorem is developed to provide the theoretical footing for novel reconfiguration algorithms for the fabrication-time and run-time processing. For fabrication-time yield enhancement, the problem of finding a feasible...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE Trans. Comput.; (United States) 1989-04, Vol.38 (4), p.501-514
Hauptverfasser: Kung, S.-Y., Jean, S.-N., Chang, C.-W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An array grid model based on single-track switches is proposed. A reconfigurability theorem is developed to provide the theoretical footing for novel reconfiguration algorithms for the fabrication-time and run-time processing. For fabrication-time yield enhancement, the problem of finding a feasible reconfiguration using global control can be reformulated as a maximum independent set problem. An existing algorithm in graph theory is adopted to solve this problem. The simulations conducted indicate that the algorithm is computationally very efficient; therefore, it may also be applicable to certain run-time fault tolerance. In real-time fault tolerance, the propagation time of data/control signals between the host computer incurred in the global control is often prohibitively long; therefore, only distributed processing is feasible. Based on the same reconfigurability theorem, a distributive reconfiguration algorithm is developed for (asynchronous) array processors.< >
ISSN:0018-9340
1557-9956
DOI:10.1109/12.21143