A generalized Euclidean algorithm for multisequence shift-register synthesis

The problem of finding a linear-feedback shift register of shortest length capable of generating prescribed multiple sequences is considered. A generalized Euclidean algorithm, which is based on a generalized polynomial division algorithm, is presented. A necessary and sufficient condition for the u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 1989-05, Vol.35 (3), p.584-594
Hauptverfasser: Feng, G.-L., Tzeng, K.K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The problem of finding a linear-feedback shift register of shortest length capable of generating prescribed multiple sequences is considered. A generalized Euclidean algorithm, which is based on a generalized polynomial division algorithm, is presented. A necessary and sufficient condition for the uniqueness of the solution is given. When the solution is not unique, the set of all possible solutions is also derived. It is shown that the algorithm can be applied to the decoding of many cyclic codes for which multiple syndrome sequences are available. When it is applied to the case of a single sequence, the algorithm reduces to that introduced by Y. Sugiyama et al. (Inf. Control, vol.27, p.87-9, Feb. 1975) in the decoding of BCH codes.< >
ISSN:0018-9448
1557-9654
DOI:10.1109/18.30981