Hygromachines: Humidity-Powered Wheels, Seesaws, and Vehicles
Hygroscopic soft actuators offer an attractive means to convert environmental energy to mechanical motions as they use water vapor, a ubiquitous substance in the atmosphere. To overcome the limits of existing hygroactuators, such as simplistic actuation mode, slow response, and low efficiency, here...
Gespeichert in:
Veröffentlicht in: | Soft robotics 2023-12, Vol.10 (6), p.1171-1180 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hygroscopic soft actuators offer an attractive means to convert environmental energy to mechanical motions as they use water vapor, a ubiquitous substance in the atmosphere. To overcome the limits of existing hygroactuators, such as simplistic actuation mode, slow response, and low efficiency, here we present three kinds of humidity-powered soft machines adopting directionally electrospun hygroresponsive nanofibrous sheets. The wheels, seesaws, and vehicles developed in this work utilize spatial humidity gradient naturally established near moist surfaces such as human skin, so that they operate spontaneously, realizing energy scavenging or harvesting. We also constructed a theoretical framework to mechanically analyze their dynamics, which allowed us to optimize their design to obtain the highest motion speed physically possible. |
---|---|
ISSN: | 2169-5172 2169-5180 |
DOI: | 10.1089/soro.2022.0218 |