Adsorptive removal of benzene and toluene from aqueous solutions by oxygen-functionalized multi-walled carbon nanotubes derived from rice husk waste: A comparative study

One of the current directions for sustainable development is to use waste resources to create materials that reduce environmental pollution. In this study, multi-walled carbon nanotubes (MWCNT) and their oxygen-functionalized forms (HNO3/H2SO4-oxidized MWCNT, NaOCl-oxidized MWCNT, and H2O2-oxidized...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemosphere (Oxford) 2023-09, Vol.336, p.139265-139265, Article 139265
Hauptverfasser: H.Q. Le, Anh, Hoang, Hien Y, Le Van, Thuan, Hoang Nguyen, Tien, Uyen Dao, My
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:One of the current directions for sustainable development is to use waste resources to create materials that reduce environmental pollution. In this study, multi-walled carbon nanotubes (MWCNT) and their oxygen-functionalized forms (HNO3/H2SO4-oxidized MWCNT, NaOCl-oxidized MWCNT, and H2O2-oxidized MWCNT) were first synthesized from activated carbon (AC) derived from rice husk waste. A comprehensive comparison of the morphological and structural properties of these materials was conducted using FT-IR, BET, XRD, SEM, TEM, TGA, Raman spectroscopy, and surface charge analysis. The morphology study suggests that the synthesized MWCNTs have an average outer and inner diameter of about 40 and 20 nm, respectively. Additionally, the NaOCl-oxidized MWCNT possesses the largest interspaces between nanotubes, while the HNO3/H2SO4-oxidized CNT has the most oxygen-functional groups, including –COOH, (Ar)-OH, and C–OH. The adsorption capacities of these materials were also compared for the removal of benzene and toluene. Experimental results have shown that while porosity is the primary factor governing the benzene and toluene adsorption onto AC, functionalization degree and surface chemical characteristics are the determining factors in the adsorption capacity of the as-prepared MWCNTs. The adsorption capacity of these aromatic compounds in an aqueous solution increases in the following order: AC 
ISSN:0045-6535
1879-1298
DOI:10.1016/j.chemosphere.2023.139265