Ligand-Controlled Electroreduction of CO2 to Formate over Facet-Defined Bimetallic Sulfide Nanoplates

CO2 reduction (CO2R) catalyzed by an efficient, stable, and earth-abundant electrocatalyst offers an attractive means to store energy derived from renewable sources. Here, we describe the synthesis of facet-defined Cu2SnS3 nanoplates and the ligand-controlled CO2R property. We show that thiocyanate-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2023-07, Vol.23 (13), p.5911-5918
Hauptverfasser: Liu, Yang, Jiang, Zhou, Huang, Chuanliang, Jeong, Soojin, Coughlin, Amanda L., Zhang, Shixiong, Liu, Yuanyue, Ye, Xingchen
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:CO2 reduction (CO2R) catalyzed by an efficient, stable, and earth-abundant electrocatalyst offers an attractive means to store energy derived from renewable sources. Here, we describe the synthesis of facet-defined Cu2SnS3 nanoplates and the ligand-controlled CO2R property. We show that thiocyanate-capped Cu2SnS3 nanoplates possess excellent selectivity toward formate over a wide range of potentials and current densities, attaining a maximum formate Faradaic efficiency of 92% and partial current densities as high as 181 mA cm–2 when tested using a flow cell with gas-diffusion electrode. In situ spectroscopic measurements and theoretical calculations reveal that the high formate selectivity originates from favorable adsorption of HCOO* intermediates on cationic Sn sites that are electronically modulated by thiocyanates bound to adjacent Cu sites. Our work illustrates that well-defined multimetallic sulfide nanocrystals with tailored surface chemistries could provide a new avenue for future CO2R electrocatalyst design.
ISSN:1530-6984
1530-6992
DOI:10.1021/acs.nanolett.3c00703