Analysis and Model-Based Control of Servomechanisms With Friction

Friction is responsible for several servomechanism limitations, and their elimination is always a challenge for control engineers. In this paper, model-based feedback compensation is studied for servomechanism tracking tasks. Several kinetic friction models are employed and their parameters identifi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of dynamic systems, measurement, and control measurement, and control, 2004-12, Vol.126 (4), p.911-915
Hauptverfasser: Papadopoulos, Evangelos G, Chasparis, Georgios C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Friction is responsible for several servomechanism limitations, and their elimination is always a challenge for control engineers. In this paper, model-based feedback compensation is studied for servomechanism tracking tasks. Several kinetic friction models are employed and their parameters identified experimentally. The effects of friction compensation on system response are examined using describing function analysis. A number of control laws including classical laws, rigid body motion models, and friction compensation are compared experimentally in large-displacement tasks. Results show that the best response is obtained using a controller that incorporates a rigid body model and a friction model based on an accurate description of identified kinetic friction effects.
ISSN:0022-0434
1528-9028
DOI:10.1115/1.1849245