Generating daily high-resolution and full-coverage XCO2 across China from 2015 to 2020 based on OCO-2 and CAMS data
China has set a goal to achieve carbon neutrality by 2060, and satellite remote sensing allows for acquiring large-range and high-resolution carbon dioxide (CO2) data, which can aid in achieving this goal. However, satellite-derived column-averaged dry-air mole fraction of CO2 (XCO2) products often...
Gespeichert in:
Veröffentlicht in: | The Science of the total environment 2023-10, Vol.893, p.164921-164921, Article 164921 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | China has set a goal to achieve carbon neutrality by 2060, and satellite remote sensing allows for acquiring large-range and high-resolution carbon dioxide (CO2) data, which can aid in achieving this goal. However, satellite-derived column-averaged dry-air mole fraction of CO2 (XCO2) products often suffer from substantial spatial gaps due to the impacts of narrow swath and clouds. Here, this paper generates daily full-coverage XCO2 data at a high spatial resolution of 0.1° over China during 2015–2020, by fusing satellite observations and reanalysis data in a deep neural network (DNN) framework. Specifically, DNN constructs the relationships between Orbiting Carbon Observatory-2 satellite XCO2 retrievals, Copernicus Atmosphere Monitoring Service (CAMS) XCO2 reanalysis data, and environmental factors. Then, daily full-coverage XCO2 data can be generated based on CAMS XCO2 and environmental factors. Results show that a satisfactory performance is reported in multiform validations, with RMSE and R2 of 0.99 ppm and 0.963 in terms of the sample-based cross-validation, respectively. The independent in-situ validation also indicates high consistency (R2 = 0.866 and RMSE = 1.71 ppm) between XCO2 estimates and ground measurements. Based on the generated dataset, spatial and seasonal distributions of XCO2 across China are investigated, and a growth rate of 2.71 ppm/yr is found from 2015 to 2020. This paper generates long time series of full-coverage XCO2 data, which helps promote our understanding of carbon cycling. The dataset is available from https://doi.org/10.5281/zenodo.7793917.
[Display omitted]
•Daily full-coverage high-resolution XCO2 data is generated in China over 2015–2020.•The deep learning-based approach shows excellent performance.•Spatiotemporal distributions and trends of XCO2 in China are explored. |
---|---|
ISSN: | 0048-9697 1879-1026 |
DOI: | 10.1016/j.scitotenv.2023.164921 |