Nanoindentation and morphological studies on nylon 66 nanocomposites. I. Effect of clay loading

Nanoindentation technique has been used to investigate the mechanical properties of exfoliated nylon 66 (PA66)/clay nanocomposites in present study. The hardness, elastic modulus and creep behavior of the nanocomposites have been evaluated as a function of clay concentration. It indicates that incor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer (Guilford) 2004-05, Vol.45 (10), p.3341-3349
Hauptverfasser: Shen, Lu, Phang, In Yee, Chen, Ling, Liu, Tianxi, Zeng, Kaiyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nanoindentation technique has been used to investigate the mechanical properties of exfoliated nylon 66 (PA66)/clay nanocomposites in present study. The hardness, elastic modulus and creep behavior of the nanocomposites have been evaluated as a function of clay concentration. It indicates that incorporation of clay nanofiller enhances the hardness and elastic modulus of the matrix. The elastic modulus data calculated from indentation load-displacement experiments are comparable with those obtained from dynamic mechanical analysis and the tensile tests. However, the creep behavior of the nanocomposites shows an unexpected increasing trend as the clay loading increases (up to 5 wt%). The lowered creep resistance with increasing clay content is mainly due to the decrease of crystal size and degree of crystallinity as a result of clay addition into PA66 matrix, as evidenced by optical microscopy and X-ray diffraction. At lower clay concentration (here ≤5 wt%), morphological changes due to addition of clay plays the dominant role in creep behavior compared with the reinforcement effect from nanoclay.
ISSN:0032-3861
1873-2291
DOI:10.1016/j.polymer.2004.03.036