Inverse eigenproblem for centrosymmetric and centroskew matrices and their approximation
In this paper, we first give the solvability condition for the following inverse eigenproblem (IEP): given a set of vectors { x i} i=1 m in C n and a set of complex numbers { λ i } i=1 m , find a centrosymmetric or centroskew matrix C in R n×n such that { x i} i=1 m and { λ i } i=1 m are the eigenve...
Gespeichert in:
Veröffentlicht in: | Theoretical computer science 2004-05, Vol.315 (2), p.309-318 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we first give the solvability condition for the following inverse eigenproblem (IEP): given a set of vectors
{
x
i}
i=1
m
in
C
n
and a set of complex numbers {
λ
i
}
i=1
m
, find a centrosymmetric or centroskew matrix
C in
R
n×n
such that
{
x
i}
i=1
m
and {
λ
i
}
i=1
m
are the eigenvectors and eigenvalues of
C, respectively. We then consider the best approximation problem for the IEPs that are solvable. More precisely, given an arbitrary matrix
B in
R
n×n
, we find the matrix
C which is the solution to the IEP and is closest to
B in the Frobenius norm. We show that the best approximation is unique and derive an expression for it. |
---|---|
ISSN: | 0304-3975 1879-2294 |
DOI: | 10.1016/j.tcs.2004.01.017 |