Combined disposal of methyl orange and corn straw via stepwise adsorption-biomethanation-composting

Agriculture wastes have been proved to be the potential adsorbents to remove azo dye from textile wastewater, but the post-treatment of azo dye loaded agriculture waste is generally ignored. A three-step strategy including sequential adsorption-biomethanation-composting was developed to realize the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of environmental management 2023-10, Vol.344, p.118358-118358, Article 118358
Hauptverfasser: Fu, Shanfei, Xie, Zhong, Wang, Ruonan, Zou, Hua, Lian, Shujuan, Guo, Rongbo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Agriculture wastes have been proved to be the potential adsorbents to remove azo dye from textile wastewater, but the post-treatment of azo dye loaded agriculture waste is generally ignored. A three-step strategy including sequential adsorption-biomethanation-composting was developed to realize the co-processing of azo dye and corn straw (CS). Results showed that CS represented a potential adsorbent to remove methyl orange (MO) from textile wastewater, with the maximum MO adsorption capacity of 10.00 ± 0.46 mg/g, deriving from the Langmuir model. During the biomethanation, CS could serve as electron donor for MO decolorization and substrate for biogas production simultaneously. Though the cumulative methane yield of CS loaded with MO was 11.7 ± 2.28% lower than that of blank CS, almost complete de-colorization of MO could be achieved within 72 h. Composting could achieve the further degradation of aromatic amines (intermediates during the degradation of MO) and decomposition of digestate. After 5 days’ composting, 4-aminobenzenesulfonic acid (4-ABA) was not detectable. The germination index (GI) also indicated that the toxicity of aromatic amine was eliminated. The overall utilization strategy gives novel light on the management of agriculture waste and textile wastewater. [Display omitted] •A step-wise strategy, adsorption-biomethanation-composting, was developed.•Methyl orange loaded corn straw was utilized as substrate for biogas reactor.•Azo bond cleavage took place in anaerobic digestion.•Methyl orange had no significant negative influence to the microbes in AD system.•Aerobic composting achieved the removal of 4-aminobenzenesulfonic acid.
ISSN:0301-4797
1095-8630
DOI:10.1016/j.jenvman.2023.118358