Phosphorus and Silicon-Based Macromolecules as Degradable Biomedical Polymers

Synthetic polymers are indispensable in biomedical applications because they can be fabricated with consistent and reproducible properties, facile scalability, and customizable functionality to perform diverse tasks. However, currently available synthetic polymers have limitations, most notably when...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecular bioscience 2023-11, Vol.23 (11), p.e2300127-e2300127
Hauptverfasser: Haudum, Stephan, Strasser, Paul, Teasdale, Ian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Synthetic polymers are indispensable in biomedical applications because they can be fabricated with consistent and reproducible properties, facile scalability, and customizable functionality to perform diverse tasks. However, currently available synthetic polymers have limitations, most notably when timely biodegradation is required. Despite there being, in principle, an entire periodic table to choose from, with the obvious exception of silicones, nearly all known synthetic polymers are combinations of carbon, nitrogen, and oxygen in the main chain. Expanding this to main-group heteroatoms can open the way to novel material properties. Herein the authors report on research to incorporate the chemically versatile and abundant silicon and phosphorus into polymers to induce cleavability into the polymer main chain. Less stable polymers, which degrade in a timely manner in mild biological environments, have considerable potential in biomedical applications. Herein the basic chemistry behind these materials is described and some recent studies into their medical applications are highlighted.
ISSN:1616-5187
1616-5195
DOI:10.1002/mabi.202300127