Harnessing Computational Complexity Theory to Model Human Decision‐making and Cognition

A central aim of cognitive science is to understand the fundamental mechanisms that enable humans to navigate and make sense of complex environments. In this letter, we argue that computational complexity theory, a foundational framework for evaluating computational resource requirements, holds sign...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cognitive science 2023-06, Vol.47 (6), p.e13304-n/a
Hauptverfasser: Franco, Juan Pablo, Murawski, Carsten
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A central aim of cognitive science is to understand the fundamental mechanisms that enable humans to navigate and make sense of complex environments. In this letter, we argue that computational complexity theory, a foundational framework for evaluating computational resource requirements, holds significant potential in addressing this challenge. As humans possess limited cognitive resources for processing vast amounts of information, understanding how humans perform complex cognitive tasks requires comprehending the underlying factors that drive information processing demands. Computational complexity theory provides a comprehensive theoretical framework to achieve this goal. By adopting this framework, we can gain new insights into how cognitive systems work and develop a more nuanced understanding of the relation between task complexity and human behavior. We provide empirical evidence supporting our argument and identify several open research questions and challenges in applying computational complexity theory to human decision‐making and cognitive science at large.
ISSN:0364-0213
1551-6709
DOI:10.1111/cogs.13304