Spatial and PMF analysis of particle size distributions simultaneously measured at four locations at the roadside of highways
In urban areas, particulate matter emitted from vehicles directly affects the health of citizens near roads. Thus, in this study, particle size distribution was measured by the horizontal and vertical distances along a highway road with heavy traffic to characterize the dispersion phenomena of parti...
Gespeichert in:
Veröffentlicht in: | The Science of the total environment 2023-10, Vol.893, p.164892-164892, Article 164892 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In urban areas, particulate matter emitted from vehicles directly affects the health of citizens near roads. Thus, in this study, particle size distribution was measured by the horizontal and vertical distances along a highway road with heavy traffic to characterize the dispersion phenomena of particulate matter emitted from vehicles. In addition, the contribution of pollution sources was analyzed using a source-receptor model. A concentration gradient was observed in which the concentration decreased with the increase in the distance from the road when the wind blew from the road to the monitoring locations. The concentration was slightly higher within 50 m of the road when the wind blows parallel to the road, and similar concentrations were found at the other monitoring locations further away from the roads. In particular, the higher the turbulence intensity of the wind, the lower is the concentration gradient coefficient because of the more enhanced mixing and dispersion. A positive matrix factorization (PMF) model with the measured particle size distribution data in the range of 9–300 nm resulted in a contribution of about 70 % (number) and 20 % (mass) to particle concentrations because of six types of vehicles including LPG, two gasoline vehicles (GDI, MPI), and three diesel vehicles with 3rd, 4th, and 5th emission classes. It showed a decrease in the vehicular contribution as the distance from the road increased. Particle number concentrations decreased with increasing altitude up to 30 m above the ground. The results of this study can be useful in deriving generalized gradient equations of particle concentrations exposed by distance and wind direction at the roadside using traffic and meteorological conditions and for establishing environmental policies, such as roadside exposure assessment, in the future.
Dispersion of particles emitted from vehicles on a busy highway was characterized by roadside measurements of horizontal and vertical profiles of particle size distributions measured at four locations. The source profiles and contributions were estimated by major sources using a source-receptor model such as PMF.
[Display omitted]
•Particle size distribution was measured simultaneously at four locations at the roadside.•Horizontal and vertical particle profiles were measured using a mobile lab and a drone.•Particle concentration gradient depends on turbulence intensity of wind.•Source apportionment of particle size distribution was done using PMF. |
---|---|
ISSN: | 0048-9697 1879-1026 |
DOI: | 10.1016/j.scitotenv.2023.164892 |