Gum Arabic polysaccharide embedded L-cysteine capped copper oxide nanocarriers selectively inhibit fluconazole-resistant C. albicans biofilm and remove the toxic dye from wastewater
Copper oxide nanocarriers have attracted increasing interest in the scientific community, including antimicrobial applications. Candida biofilm developed causes serious clinical problems, leading to drug failure caused by its inherent drug tolerance. Nanocarriers are a good alternative approach to s...
Gespeichert in:
Veröffentlicht in: | International journal of biological macromolecules 2023-07, Vol.244, p.125361-125361, Article 125361 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Copper oxide nanocarriers have attracted increasing interest in the scientific community, including antimicrobial applications. Candida biofilm developed causes serious clinical problems, leading to drug failure caused by its inherent drug tolerance. Nanocarriers are a good alternative approach to solving this challenge because of their excellent penetration power inside biofilms. Hence, main objectives of this research were to prepare gum arabic-embedded L-cysteine-capped copper oxide nanocarriers (GCCuO NCs) and tested against C. albicans and explore another application. To achieve the main research objectives, GCCuO NCs were synthesized and investigated for antibiofilm potency against C. albicans. Various methods were employed to measure antibiofilm potency such as biofilm assay etc., of NCs. The nano size of GCCuO NCs is advantageous for augmenting penetration power and retention into biofilms. GCCuO NCs at 100 μg/mL exhibited significant antibiofilm activity against the C. albicans DAY185 by switching of yeast-to-hyphae and gene perturbation. The level of CR dye adsorption was 58.96 % using 30 μg/mL of NCs. Based on effective C. albicans biofilm inhibition and CR dye adsorption capacity of NCs, it can be suggested that present research work opens an innovative path to treat biofilm-associated fungal infections, and these NCs can be used for environmental remedies.
•A gum arabic-embedded L-cysteine-capped CuO nanocarrier (GCCuO NC) was synthesized.•GCCuO NCs significantly inhibited C. albicans biofilm without inhibition of planktonic cells.•Molecular insight into the underlying mechanism of GCCuO NCs against Candida biofilm was revealed.•The GCCuO NCs adsorbed Congo red dye efficiently. |
---|---|
ISSN: | 0141-8130 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2023.125361 |