Re-exposure of chitosan by an inhalable microsphere providing the re-education of TAMs for lung cancer treatment with assistant from sustained H2S generation

[Display omitted] The re-education of tumor-associated macrophages (TAMs) is an effective strategy to inhibit the growth and metastasis of lung cancer. We have reported that chitosan could re-educate the TAMs and then inhibit cancer metastasis; however, the re-exposure of chitosan from the chemical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of pharmaceutics 2023-07, Vol.642, p.123142-123142, Article 123142
Hauptverfasser: Jiang, Liqun, Wang, Ziyao, Wang, Yan, Liu, Shuo, Xu, Ya, Zhang, Cong, Li, Lei, Si, Sujia, Yao, Bingmei, Dai, Wenjin, Li, Huiyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] The re-education of tumor-associated macrophages (TAMs) is an effective strategy to inhibit the growth and metastasis of lung cancer. We have reported that chitosan could re-educate the TAMs and then inhibit cancer metastasis; however, the re-exposure of chitosan from the chemical corona on their surface is critical for this effect. In this study, a strategy was proposed to re-expose the chitosan from chemical corona, and a sustained H2S generation was applied to enhance the immunotherapy of chitosan. To achieve this objective, an inhalable microsphere (namely F/Fm) was designed, which could be degraded by the matrix metalloproteinase in lung cancer, releasing two kinds of nanoparticles; in an external magnetic field, these nanoparticles can aggregate with each other, and β-cyclodextrin on the surface of one nanoparticle can be hydrolyzed by amylase on the surface of another nanoparticle, leading to the re-exposure of chitosan in the inner layer of β-cyclodextrin and the release of diallyl trisulfide for H2S generation. In vitro, the expression of CD86 and secretion of TNF-α by TAMs was increased by F/Fm, proving the re-education of TAMs, and the apoptosis of A549 cells was promoted with the migration and invasion being inhibited. In the Lewis lung carcinoma-bearing mouse, the F/Fm re-educated the TAMs and provided a sustained generation of H2S in the region of lung cancer, effectively inhibiting the growth and metastasis of lung cancer cells. This work provides a new strategy for the treatment of lung cancer in combination of re-education of TAMs by chitosan and the adjuvant chemotherapy by H2S.
ISSN:0378-5173
1873-3476
DOI:10.1016/j.ijpharm.2023.123142