Incomplete recovery of gut microbiota in marine medaka (Oryzias melastigma) during the depuration phase, after exposure to sulfamethazine/nanoplastics

The persistence of antibiotics and nanoplastics in aquatic environment poses a great threat to aquatic organisms. In our previous study, significant decreases of bacterial richness and changes of bacterial communities in the Oryzias melastigma gut after sulfamethazine (SMZ) and polystyrene nanoplast...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2023-10, Vol.893, p.164841-164841, Article 164841
Hauptverfasser: Wang, Feipeng, Zhang, Chaoyue, Cai, Shujie, Yang, Jingyu, Li, Faguang, Liu, Xiaofan, Zhang, Yu Ting, Mu, Jingli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The persistence of antibiotics and nanoplastics in aquatic environment poses a great threat to aquatic organisms. In our previous study, significant decreases of bacterial richness and changes of bacterial communities in the Oryzias melastigma gut after sulfamethazine (SMZ) and polystyrene nanoplastics (PS) exposure were observed. Here, the O. melastigma dietary exposed to SMZ (0.5 mg/g, LSMZ; 5 mg/g, HSMZ), PS (5 mg/g, PS) or PS + HSMZ were depurated for 21 days to assess the extent of which these effects were reversible. Our results revealed that most diversity indexes of bacterial microbiota in the O. melastigma gut from the treatment groups were insignificantly different from the control, suggesting a large recovery of bacterial richness. Although the sequence abundances of a few genera remained significantly changed, the proportion of dominant genus was recovered. Exposure to SMZ affected the complexity of the bacterial networks, and the cooperation and exchange events of positively associated bacteria were enhanced during this period. After depuration, increases in the complexity of networks and intense competitions among bacteria were observed, which was beneficial for the robustness of networks. However, the gut bacterial microbiota was less stable, and several functional pathways were dysregulated, relative to the control. In addition, higher occurrence of pathogenic bacteria was found in the PS + HSMZ group relative to the signal pollutant group after depuration, indicating a greater hazard for the mixture of PS and SMZ. Taken together, this study contributes to a better understanding of the recovery of bacterial microbiota in fish gut after individual and combined exposure to nanoplastics and antibiotics. [Display omitted] •The bacterial richness in the treated O. melastigma gut was largely recovered after depuration.•The sequence abundance of the dominant genus was generally recovered after depuration.•High occurrence of pathogenic bacteria was observed in the co-exposure group after depuration.•Several functional pathways were dysregulated after depuration.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2023.164841