Two-Pronged Microbe Delivery of Nitric Oxide and Oxygen for Diabetic Wound Healing

Chronic inflammation and hypoxia in the microenvironment of diabetic foot ulcers (DFUs) can result in sustained vascular impairment, hindering tissue regeneration. While both nitric oxide and oxygen have been shown to promote wound healing in DFUs through anti-inflammatory and neovascularization, th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2023-06, Vol.23 (12), p.5595-5602
Hauptverfasser: Chen, Huan-Huan, Fu, Fang-Sheng, Chen, Qi-Wen, Zhang, Yun, Zhang, Xian-Zheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chronic inflammation and hypoxia in the microenvironment of diabetic foot ulcers (DFUs) can result in sustained vascular impairment, hindering tissue regeneration. While both nitric oxide and oxygen have been shown to promote wound healing in DFUs through anti-inflammatory and neovascularization, there is currently no available therapy that delivers both. We present a novel hydrogel consisting of Weissella and Chlorella, which alternates between nitric oxide and oxygen production to reduce chronic inflammation and hypoxia. Further experiments indicate that the hydrogel accelerates wound closure, re-epithelialization, and angiogenesis in diabetic mice and improves the survival of skin grafts. This dual-gas therapy holds promise as a potential treatment option for the management of diabetic wounds.
ISSN:1530-6984
1530-6992
DOI:10.1021/acs.nanolett.3c01023