Indentation responses of time-dependent films on stiff substrates
A viscous-elastic-plastic indentation model was extended to a thin-film system, including the effect of stiffening due to a substrate of greater modulus. The system model includes a total of five material parameters: three for the film response (modulus, hardness, and time constant), one for the sub...
Gespeichert in:
Veröffentlicht in: | Journal of materials research 2004-08, Vol.19 (8), p.2487-2497 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A viscous-elastic-plastic indentation model was extended to a thin-film system, including the effect of stiffening due to a substrate of greater modulus. The system model includes a total of five material parameters: three for the film response (modulus, hardness, and time constant), one for the substrate response (modulus), and one representing the length-scale associated with the film-substrate interface. The substrate influence is incorporated into the elastic response of the film through a depth-weighted elastic modulus (based on a series sum of film and substrate contributions). Constant loading- and unloading-rate depth-sensing indentation tests were performed on polymer films on glass or metal substrates. Evidence of substrate influence was examined by normalization of the load-displacement traces. Comparisons were made between the model and experiments for indentation tests at different peak load levels and with varying degrees of substrate influence. A single set of five parameters was sufficient to characterize and predict the experimental load-displacement data over a large range of peak load levels and corresponding degrees of substrate influence. |
---|---|
ISSN: | 0884-2914 2044-5326 |
DOI: | 10.1557/JMR.2004.0308 |