A family of low-power truly modular programmable dividers in standard 0.35-mum CMOS technology
A truly modular and power-scalable architecture for low-power programmable frequency dividers is presented. The architecture was used in the realization of a family of low-power fully programmable divider circuits, which consists of a 17-bit UHF divider, an 18-bit L-band divider, and a 12-bit refere...
Gespeichert in:
Veröffentlicht in: | IEEE journal of solid-state circuits 2000-07, Vol.35 (7), p.1039-1045 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A truly modular and power-scalable architecture for low-power programmable frequency dividers is presented. The architecture was used in the realization of a family of low-power fully programmable divider circuits, which consists of a 17-bit UHF divider, an 18-bit L-band divider, and a 12-bit reference divider. Key circuits of the architecture are 2/3 divider cells, which share the same logic and the same circuit implementation. The current consumption of each cell can be determined with a simple power optimization procedure. The implementation of the 2/3 divider cells is presented, the power optimization procedure is described, and the input amplifiers are briefly discussed. The circuits were processed in a standard 0.35 mum bulk CMOS technology, and work with a nominal supply voltage of 2.2 V. The power efficiency of the UHF divider is 0.77 GHz/mW, and of the L-band divider, 0.57 GHz/mW. The measured input sensitivity is > 10 mV rms for the UHF divider, and > 20 mV rms for the L-band divider |
---|---|
ISSN: | 0018-9200 |
DOI: | 10.1109/4.848214 |