Numerical solutions of Dirichlet problem for elliptic operator in divergence form with a right-hand side measure
We consider a second-order elliptic operator A=A( x )=−∑ i,j=1 d ∂ ia ij( x ) ∂ j+∑ j=1 db j′( x ) ∂ j+∑ j=1 d ∂ j(b j″( x )·)+c( x ) on R d from the point of view of its numerical approximations in terms of matrices A n having compartmental structure, that is ( A n ) ii >0, ( A n ) ij ⩽0, i≠ j,...
Gespeichert in:
Veröffentlicht in: | Journal of computational and applied mathematics 2004-03, Vol.164 (Complete), p.493-516 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider a second-order elliptic operator
A=A(
x
)=−∑
i,j=1
d
∂
ia
ij(
x
)
∂
j+∑
j=1
db
j′(
x
)
∂
j+∑
j=1
d
∂
j(b
j″(
x
)·)+c(
x
)
on
R
d
from the point of view of its numerical approximations in terms of matrices
A
n
having compartmental structure, that is (
A
n
)
ii
>0, (
A
n
)
ij
⩽0,
i≠
j, ∑
i
(
A
n
)
ij
⩾0. We solve numerically the corresponding Dirichlet problem on a bounded domain
D⊂
R
d(d=2,3)
, for which the right-hand side is a probability measure with support in
D. Numerical solutions on grids are nonpositive, and can be naturally embedded into linear spaces of ‘hat’ functions approximating the original solution in
W
̇
1
1(D)
. Numerical solutions converge in
L
1(
D).
The construction of our approximations is valid for general dimensions, but we give the convergence proof only for
d=2,3. We end by a nontrivial example that illustrates the obtained results. |
---|---|
ISSN: | 0377-0427 1879-1778 |
DOI: | 10.1016/S0377-0427(03)00649-6 |