Fluctuation analysis of stochastic gradient identification of polynomial Wiener systems

This correspondence presents analytical results and Monte Carlo simulations for the fluctuation behavior of a stochastic gradient adaptive identification scheme. This scheme identifies a polynomial Wiener system (linear FIR filter followed by a static polynomial nonlinearity) for noisy output observ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2000-06, Vol.48 (6), p.1820-1825
Hauptverfasser: Celka, P., Bershad, N.J., Vesin, J.-M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1825
container_issue 6
container_start_page 1820
container_title IEEE transactions on signal processing
container_volume 48
creator Celka, P.
Bershad, N.J.
Vesin, J.-M.
description This correspondence presents analytical results and Monte Carlo simulations for the fluctuation behavior of a stochastic gradient adaptive identification scheme. This scheme identifies a polynomial Wiener system (linear FIR filter followed by a static polynomial nonlinearity) for noisy output observations. The analysis includes (1) bounds and a recursion for the misadjustment matrix and (2) algorithm mean square stability regions. A diagonal step-size matrix for the adaptive coefficients is introduced to speed up convergence. The theoretical predictions of the fluctuation analysis are supported by Monte Carlo simulations.
doi_str_mv 10.1109/78.845945
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28266133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>845945</ieee_id><sourcerecordid>27509377</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-c6e2923260d490d7b04ac894e87bbab5becd320c895140bbf53b1ab5f2d442e93</originalsourceid><addsrcrecordid>eNqF0TtPwzAQAOAIgUQpDKxMEQOIIcXvx4gqCkiVWEBls2zHAVdJXOJkyL_HKBUDAyx3p7tPN9xl2TkECwiBvOViIQiVhB5kMygJLADh7DDVgOKCCv52nJ3EuAUAEiLZLNus6sH2g-59aHPd6nqMPuahymMf7IeOvbf5e6dL79o-92WKvvJ24kntQj22ofG6zjeJuC6PY-xdE0-zo0rX0Z3t8zx7Xd2_LB-L9fPD0_JuXVjMeF9Y5pBEGDFQEglKbgDRVkjiBDdGG2qcLTECqUUhAcZUFBuY-hUqCUFO4nl2Pe3ddeFzcLFXjY_W1bVuXRiikpAwzCQGSV79KZFAjEGM_4ecAok5T_DyF9yGoUs3jEoIIoRMKqGbCdkuxNi5Su063-huVBCo75cpLtT0smQvJuudcz9uP_wCmjyRwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884889937</pqid></control><display><type>article</type><title>Fluctuation analysis of stochastic gradient identification of polynomial Wiener systems</title><source>IEEE Electronic Library (IEL)</source><creator>Celka, P. ; Bershad, N.J. ; Vesin, J.-M.</creator><creatorcontrib>Celka, P. ; Bershad, N.J. ; Vesin, J.-M.</creatorcontrib><description>This correspondence presents analytical results and Monte Carlo simulations for the fluctuation behavior of a stochastic gradient adaptive identification scheme. This scheme identifies a polynomial Wiener system (linear FIR filter followed by a static polynomial nonlinearity) for noisy output observations. The analysis includes (1) bounds and a recursion for the misadjustment matrix and (2) algorithm mean square stability regions. A diagonal step-size matrix for the adaptive coefficients is introduced to speed up convergence. The theoretical predictions of the fluctuation analysis are supported by Monte Carlo simulations.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/78.845945</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computer simulation ; Convergence ; Covariance matrix ; Finite impulse response filter ; Fluctuation ; Fluctuations ; Mathematical analysis ; Mean square values ; Monte Carlo methods ; Polynomials ; Recursion ; Signal processing algorithms ; Stability analysis ; Stochastic processes ; Stochastic resonance ; Stochastic systems ; Stochasticity</subject><ispartof>IEEE transactions on signal processing, 2000-06, Vol.48 (6), p.1820-1825</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-c6e2923260d490d7b04ac894e87bbab5becd320c895140bbf53b1ab5f2d442e93</citedby><cites>FETCH-LOGICAL-c367t-c6e2923260d490d7b04ac894e87bbab5becd320c895140bbf53b1ab5f2d442e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/845945$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/845945$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Celka, P.</creatorcontrib><creatorcontrib>Bershad, N.J.</creatorcontrib><creatorcontrib>Vesin, J.-M.</creatorcontrib><title>Fluctuation analysis of stochastic gradient identification of polynomial Wiener systems</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>This correspondence presents analytical results and Monte Carlo simulations for the fluctuation behavior of a stochastic gradient adaptive identification scheme. This scheme identifies a polynomial Wiener system (linear FIR filter followed by a static polynomial nonlinearity) for noisy output observations. The analysis includes (1) bounds and a recursion for the misadjustment matrix and (2) algorithm mean square stability regions. A diagonal step-size matrix for the adaptive coefficients is introduced to speed up convergence. The theoretical predictions of the fluctuation analysis are supported by Monte Carlo simulations.</description><subject>Computer simulation</subject><subject>Convergence</subject><subject>Covariance matrix</subject><subject>Finite impulse response filter</subject><subject>Fluctuation</subject><subject>Fluctuations</subject><subject>Mathematical analysis</subject><subject>Mean square values</subject><subject>Monte Carlo methods</subject><subject>Polynomials</subject><subject>Recursion</subject><subject>Signal processing algorithms</subject><subject>Stability analysis</subject><subject>Stochastic processes</subject><subject>Stochastic resonance</subject><subject>Stochastic systems</subject><subject>Stochasticity</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0TtPwzAQAOAIgUQpDKxMEQOIIcXvx4gqCkiVWEBls2zHAVdJXOJkyL_HKBUDAyx3p7tPN9xl2TkECwiBvOViIQiVhB5kMygJLADh7DDVgOKCCv52nJ3EuAUAEiLZLNus6sH2g-59aHPd6nqMPuahymMf7IeOvbf5e6dL79o-92WKvvJ24kntQj22ofG6zjeJuC6PY-xdE0-zo0rX0Z3t8zx7Xd2_LB-L9fPD0_JuXVjMeF9Y5pBEGDFQEglKbgDRVkjiBDdGG2qcLTECqUUhAcZUFBuY-hUqCUFO4nl2Pe3ddeFzcLFXjY_W1bVuXRiikpAwzCQGSV79KZFAjEGM_4ecAok5T_DyF9yGoUs3jEoIIoRMKqGbCdkuxNi5Su063-huVBCo75cpLtT0smQvJuudcz9uP_wCmjyRwg</recordid><startdate>20000601</startdate><enddate>20000601</enddate><creator>Celka, P.</creator><creator>Bershad, N.J.</creator><creator>Vesin, J.-M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20000601</creationdate><title>Fluctuation analysis of stochastic gradient identification of polynomial Wiener systems</title><author>Celka, P. ; Bershad, N.J. ; Vesin, J.-M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-c6e2923260d490d7b04ac894e87bbab5becd320c895140bbf53b1ab5f2d442e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Computer simulation</topic><topic>Convergence</topic><topic>Covariance matrix</topic><topic>Finite impulse response filter</topic><topic>Fluctuation</topic><topic>Fluctuations</topic><topic>Mathematical analysis</topic><topic>Mean square values</topic><topic>Monte Carlo methods</topic><topic>Polynomials</topic><topic>Recursion</topic><topic>Signal processing algorithms</topic><topic>Stability analysis</topic><topic>Stochastic processes</topic><topic>Stochastic resonance</topic><topic>Stochastic systems</topic><topic>Stochasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Celka, P.</creatorcontrib><creatorcontrib>Bershad, N.J.</creatorcontrib><creatorcontrib>Vesin, J.-M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Celka, P.</au><au>Bershad, N.J.</au><au>Vesin, J.-M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fluctuation analysis of stochastic gradient identification of polynomial Wiener systems</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2000-06-01</date><risdate>2000</risdate><volume>48</volume><issue>6</issue><spage>1820</spage><epage>1825</epage><pages>1820-1825</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>This correspondence presents analytical results and Monte Carlo simulations for the fluctuation behavior of a stochastic gradient adaptive identification scheme. This scheme identifies a polynomial Wiener system (linear FIR filter followed by a static polynomial nonlinearity) for noisy output observations. The analysis includes (1) bounds and a recursion for the misadjustment matrix and (2) algorithm mean square stability regions. A diagonal step-size matrix for the adaptive coefficients is introduced to speed up convergence. The theoretical predictions of the fluctuation analysis are supported by Monte Carlo simulations.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/78.845945</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2000-06, Vol.48 (6), p.1820-1825
issn 1053-587X
1941-0476
language eng
recordid cdi_proquest_miscellaneous_28266133
source IEEE Electronic Library (IEL)
subjects Computer simulation
Convergence
Covariance matrix
Finite impulse response filter
Fluctuation
Fluctuations
Mathematical analysis
Mean square values
Monte Carlo methods
Polynomials
Recursion
Signal processing algorithms
Stability analysis
Stochastic processes
Stochastic resonance
Stochastic systems
Stochasticity
title Fluctuation analysis of stochastic gradient identification of polynomial Wiener systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A48%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fluctuation%20analysis%20of%20stochastic%20gradient%20identification%20of%20polynomial%20Wiener%20systems&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Celka,%20P.&rft.date=2000-06-01&rft.volume=48&rft.issue=6&rft.spage=1820&rft.epage=1825&rft.pages=1820-1825&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/78.845945&rft_dat=%3Cproquest_RIE%3E27509377%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884889937&rft_id=info:pmid/&rft_ieee_id=845945&rfr_iscdi=true