Fluctuation analysis of stochastic gradient identification of polynomial Wiener systems

This correspondence presents analytical results and Monte Carlo simulations for the fluctuation behavior of a stochastic gradient adaptive identification scheme. This scheme identifies a polynomial Wiener system (linear FIR filter followed by a static polynomial nonlinearity) for noisy output observ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2000-06, Vol.48 (6), p.1820-1825
Hauptverfasser: Celka, P., Bershad, N.J., Vesin, J.-M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This correspondence presents analytical results and Monte Carlo simulations for the fluctuation behavior of a stochastic gradient adaptive identification scheme. This scheme identifies a polynomial Wiener system (linear FIR filter followed by a static polynomial nonlinearity) for noisy output observations. The analysis includes (1) bounds and a recursion for the misadjustment matrix and (2) algorithm mean square stability regions. A diagonal step-size matrix for the adaptive coefficients is introduced to speed up convergence. The theoretical predictions of the fluctuation analysis are supported by Monte Carlo simulations.
ISSN:1053-587X
1941-0476
DOI:10.1109/78.845945