Eyes on Topical Ocular Disposition: The Considered Design of a Lead Janus Kinase (JAK) Inhibitor That Utilizes a Unique Azetidin-3-Amino Bridging Scaffold to Attenuate Off-Target Kinase Activity, While Driving Potency and Aqueous Solubility

An unmet medical need remains for patients suffering from dry eye disease (DED). A fast-acting, better-tolerated noncorticosteroid anti-inflammatory eye drop could improve patient outcomes and quality of life. Herein, we describe a small-molecule drug discovery effort to identify novel, potent, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medicinal chemistry 2023-07, Vol.66 (13), p.8929-8950
Hauptverfasser: Gordhan, Heeren M., Miller, Steven T., Clancy, Daphne C., Ina, Maria, McDougal, Alan V., Cutno, D’Quan K., Brown, Robert V., Lichorowic, Cynthia L., Sturdivant, Jill M., Vick, Kyle A., Williams, Stuart S., deLong, Mitchell A., White, Jeffrey C., Kopczynski, Casey C., Ellis, David A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An unmet medical need remains for patients suffering from dry eye disease (DED). A fast-acting, better-tolerated noncorticosteroid anti-inflammatory eye drop could improve patient outcomes and quality of life. Herein, we describe a small-molecule drug discovery effort to identify novel, potent, and water-soluble JAK inhibitors as immunomodulating agents for topical ocular disposition. A focused library of known 3-(4-(2-(arylamino)­pyrimidin-4-yl)-1H-pyrazol-1-yl)­propanenitriles was evaluated as a molecular starting point. Structure–activity relationships (SARs) revealed a ligand-efficient (LE) JAK inhibitor series, amenable to aqueous solubility. Subsequent in vitro analysis indicated the potential for off-target toxicity. A KINOMEscan selectivity profile of 5 substantiated the likelihood of widespread series affinity across the human kinome. An sp2-to-sp3 drug design strategy was undertaken to attenuate off-target kinase activity while driving JAK-STAT potency and aqueous solubility. Tactics to reduce aromatic character, increase fraction sp3 (Fsp3), and bolster molecular complexity led to the azetidin-3-amino bridging scaffold in 31.
ISSN:0022-2623
1520-4804
DOI:10.1021/acs.jmedchem.3c00519