Designing optimal quantum detectors via semidefinite programming

We consider the problem of designing an optimal quantum detector to minimize the probability of a detection error when distinguishing among a collection of quantum states, represented by a set of density operators. We show that the design of the optimal detector can be formulated as a semidefinite p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2003-04, Vol.49 (4), p.1007-1012
Hauptverfasser: Eldar, Y.C., Megretski, A., Verghese, G.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the problem of designing an optimal quantum detector to minimize the probability of a detection error when distinguishing among a collection of quantum states, represented by a set of density operators. We show that the design of the optimal detector can be formulated as a semidefinite programming problem. Based on this formulation, we derive a set of necessary and sufficient conditions for an optimal quantum measurement. We then show that the optimal measurement can be found by solving a standard (convex) semidefinite program. By exploiting the many well-known algorithms for solving semidefinite programs, which are guaranteed to converge to the global optimum, the optimal measurement can be computed very efficiently in polynomial time within any desired accuracy. Using the semidefinite programming formulation, we also show that the rank of each optimal measurement operator is no larger than the rank of the corresponding density operator. In particular, if the quantum state ensemble is a pure-state ensemble consisting of (not necessarily independent) rank-one density operators, then we show that the optimal measurement is a pure-state measurement consisting of rank-one measurement operators.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2003.809510