Adaptive estimation in linear systems with unknown Markovian noise statistics
The asymptotic behavior of a Bayes optimal adaptive estimation scheme for a linear discrete-time dynamical system with unknown Markovian noise statistics is investigated. Noise influencing the state equation and the measurement equation is assumed to come from a group of Gaussian distributions havin...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 1980-01, Vol.26 (1), p.66-78 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The asymptotic behavior of a Bayes optimal adaptive estimation scheme for a linear discrete-time dynamical system with unknown Markovian noise statistics is investigated. Noise influencing the state equation and the measurement equation is assumed to come from a group of Gaussian distributions having different means and covariances, with transitions from one noise source to another determined by a Markov transition matrix. The transition probability matrix is unknown and can take values only from a finite set. An example is simulated to illustrate the convergence. |
---|---|
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/TIT.1980.1056131 |