Adaptive estimation in linear systems with unknown Markovian noise statistics

The asymptotic behavior of a Bayes optimal adaptive estimation scheme for a linear discrete-time dynamical system with unknown Markovian noise statistics is investigated. Noise influencing the state equation and the measurement equation is assumed to come from a group of Gaussian distributions havin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 1980-01, Vol.26 (1), p.66-78
Hauptverfasser: Tugnait, J., Haddad, A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The asymptotic behavior of a Bayes optimal adaptive estimation scheme for a linear discrete-time dynamical system with unknown Markovian noise statistics is investigated. Noise influencing the state equation and the measurement equation is assumed to come from a group of Gaussian distributions having different means and covariances, with transitions from one noise source to another determined by a Markov transition matrix. The transition probability matrix is unknown and can take values only from a finite set. An example is simulated to illustrate the convergence.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.1980.1056131