Toward a Smart Sensing System to Monitor Small Animal's Physical State via Multi-Frequency Resonator Array

This paper presents a highly scalable and rack-mountable wireless sensing system for long-term monitoring (i.e., sense and estimate) of small animal/s' physical state (SAPS), such as changes in location and posture within standard cages. The conventional tracking systems may lack one or more fe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on biomedical circuits and systems 2023-06, Vol.17 (3), p.1-13
Hauptverfasser: Saha, Reepa, Jiang, Le, Salsabili, Hoda, Faezipour, Miad, Ostadabbas, Sarah, Larimer, Ben, Mirbozorgi, S. Abdollah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a highly scalable and rack-mountable wireless sensing system for long-term monitoring (i.e., sense and estimate) of small animal/s' physical state (SAPS), such as changes in location and posture within standard cages. The conventional tracking systems may lack one or more features such as scalability, cost efficiency, rack-mount ability, and light condition insensitivity to work 24/7 on a large scale. The proposed sensing mechanism relies on relative changes of multiple resonance frequencies due to the animal's presence over the sensor unit. The sensor unit can track SAPS changes based on changes in electrical properties in the sensors near fields, appearing in the resonance frequencies, i.e., an Electromagnetic (EM) Signature, within the 200 MHz - 300 MHz frequency range. The sensing unit is located underneath a standard mouse cage and consists of thin layers of a reading coil and six resonators tuned at six distinct frequencies. ANSYS HFSS software is used to model and optimize the proposed sensor unit and calculate the Specific Absorption Rate (SAR) obtained under 0.05 W/kg. Multiple prototypes have been implemented to test, validate, and characterize the performance of the design by conducting in vitro and in vivo experiments on Mice. The in-vitro test results have shown a 15 mm spatial resolution in detecting the mouse's location over the sensor array having maximum frequency shifts of 832 kHz and posture detection with under 30º resolution. The in-vivo experiment on mouse displacement resulted in frequency shifts of up to 790 kHz, indicating the SAPS's capability to detect the Mice's physical state.
ISSN:1932-4545
1940-9990
DOI:10.1109/TBCAS.2023.3284823